BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 23389671)

  • 1. Microwave synthesis of Au-Rh core-shell nanoparticles and implications of the shell thickness in hydrogenation catalysis.
    García S; Anderson RM; Celio H; Dahal N; Dolocan A; Zhou J; Humphrey SM
    Chem Commun (Camb); 2013 May; 49(39):4241-3. PubMed ID: 23389671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave synthesis of classically immiscible rhodium-silver and rhodium-gold alloy nanoparticles: highly active hydrogenation catalysts.
    García S; Zhang L; Piburn GW; Henkelman G; Humphrey SM
    ACS Nano; 2014 Nov; 8(11):11512-21. PubMed ID: 25347078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beneficial effects of microwave-assisted heating versus conventional heating in noble metal nanoparticle synthesis.
    Dahal N; García S; Zhou J; Humphrey SM
    ACS Nano; 2012 Nov; 6(11):9433-46. PubMed ID: 23033897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing atomic structure in magnetic core/shell nanoparticles using synchrotron radiation.
    Baker SH; Roy M; Thornton SC; Qureshi M; Binns C
    J Phys Condens Matter; 2010 Sep; 22(38):385301. PubMed ID: 21386550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of core/shell nanoparticles of Au/CdSe via Au-Cd bialloy precursor.
    Lu W; Wang B; Zeng J; Wang X; Zhang S; Hou JG
    Langmuir; 2005 Apr; 21(8):3684-7. PubMed ID: 15807621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monodispersed core-shell Fe3O4@Au nanoparticles.
    Wang L; Luo J; Fan Q; Suzuki M; Suzuki IS; Engelhard MH; Lin Y; Kim N; Wang JQ; Zhong CJ
    J Phys Chem B; 2005 Nov; 109(46):21593-601. PubMed ID: 16853803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics.
    Gawande MB; Shelke SN; Zboril R; Varma RS
    Acc Chem Res; 2014 Apr; 47(4):1338-48. PubMed ID: 24666323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rh-Pt bimetallic catalysts: synthesis, characterization, and catalysis of core-shell, alloy, and monometallic nanoparticles.
    Alayoglu S; Eichhorn B
    J Am Chem Soc; 2008 Dec; 130(51):17479-86. PubMed ID: 19049272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser-assisted synthesis of superparamagnetic Fe@Au core-shell nanoparticles.
    Zhang J; Post M; Veres T; Jakubek ZJ; Guan J; Wang D; Normandin F; Deslandes Y; Simard B
    J Phys Chem B; 2006 Apr; 110(14):7122-8. PubMed ID: 16599475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of Rh-Au core-shell nanoparticles on TiO2(110) surface studied by STM and LEIS.
    Ovári L; Berkó A; Balázs N; Majzik Z; Kiss J
    Langmuir; 2010 Feb; 26(3):2167-75. PubMed ID: 19891450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Core(Fe)-shell(Au) nanoparticles obtained from thin Fe/Au bilayers employing surface segregation.
    Amram D; Rabkin E
    ACS Nano; 2014 Oct; 8(10):10687-93. PubMed ID: 25211205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heteroepitaxial growth of core-shell and core-multishell nanocrystals composed of palladium and gold.
    Wang F; Sun LD; Feng W; Chen H; Yeung MH; Wang J; Yan CH
    Small; 2010 Nov; 6(22):2566-75. PubMed ID: 20963792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Catalytic Hydrogenation Performance of Rh-Co
    Zhang Q; Xu C; Yin H; Zhou S
    ACS Omega; 2019 Dec; 4(24):20829-20837. PubMed ID: 31858069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic and colloidal stability behaviours of Au-acrylic core-shell nanoparticles with thin pH-responsive shells.
    Wu S; Zhu M; Lian Q; Lu D; Spencer B; Adlam DJ; Hoyland JA; Volk K; Karg M; Saunders BR
    Nanoscale; 2018 Oct; 10(39):18565-18575. PubMed ID: 30259044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of monodisperse TiO2-paraffin core-shell nanoparticles for improved dielectric properties.
    Balasubramanian B; Kraemer KL; Reding NA; Skomski R; Ducharme S; Sellmyer DJ
    ACS Nano; 2010 Apr; 4(4):1893-900. PubMed ID: 20359188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of core-shell-structured nanoparticles (with a noble-metal or metal oxide core and a chromia shell) and their application in water splitting by means of visible light.
    Maeda K; Sakamoto N; Ikeda T; Ohtsuka H; Xiong A; Lu D; Kanehara M; Teranishi T; Domen K
    Chemistry; 2010 Jul; 16(26):7750-9. PubMed ID: 20564294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A general and high-yield galvanic displacement approach to Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells and enhanced electrocatalytic performances.
    Kuai L; Geng B; Wang S; Sang Y
    Chemistry; 2012 Jul; 18(30):9423-9. PubMed ID: 22714952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled synthesis of dendritic Au@Pt core-shell nanomaterials for use as an effective fuel cell electrocatalyst.
    Wang S; Kristian N; Jiang S; Wang X
    Nanotechnology; 2009 Jan; 20(2):025605. PubMed ID: 19417274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rationally synthesized five-fold twinned core-shell Pt3Ni@Rh nanopentagons, nanostars and nanopaddlewheels for selective reduction of a phenyl ring of phthalimide.
    Khi NT; Baik H; Lee H; Yoon J; Sohn JH; Lee K
    Nanoscale; 2014 Oct; 6(19):11007-12. PubMed ID: 25125204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile synthesis of near-monodisperse Ag@Ni core-shell nanoparticles and their application for catalytic generation of hydrogen.
    Guo H; Chen Y; Chen X; Wen R; Yue GH; Peng DL
    Nanotechnology; 2011 May; 22(19):195604. PubMed ID: 21430312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.