These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 23389675)

  • 1. Prolonging the hydration and active metabolism from light periods into nights substantially enhances lichen growth.
    Bidussi M; Gauslaa Y; Solhaug KA
    Planta; 2013 May; 237(5):1359-66. PubMed ID: 23389675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soluble carbohydrates and relative growth rates in chloro-, cyano- and cephalolichens: effects of temperature and nocturnal hydration.
    Alam MA; Gauslaa Y; Solhaug KA
    New Phytol; 2015 Nov; 208(3):750-62. PubMed ID: 26017819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seasonal and spatial variation in carbon based secondary compounds in green algal and cyanobacterial members of the epiphytic lichen genus Lobaria.
    Gauslaa Y; Bidussi M; Solhaug KA; Asplund J; Larsson P
    Phytochemistry; 2013 Oct; 94():91-8. PubMed ID: 23664176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seasonal partitioning of growth into biomass and area expansion in a cephalolichen and a cyanolichen of the old forest genus Lobaria.
    Larsson P; Solhaug KA; Gauslaa Y
    New Phytol; 2012 Jun; 194(4):991-1000. PubMed ID: 22452484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Short- and long-term freezing effects in a coastal (Lobaria virens) versus a widespread lichen (L. pulmonaria).
    Solhaug KA; Chowdhury DP; Gauslaa Y
    Cryobiology; 2018 Jun; 82():124-129. PubMed ID: 29571630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Apparent electron transport rate - a non-invasive proxy of photosynthetic CO
    Solhaug KA; Asplund J; Gauslaa Y
    Planta; 2021 Jan; 253(1):14. PubMed ID: 33392847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The photobiont determines the pattern of photosynthetic activity within a single lichen thallus containing cyanobacterial and green algal sectors (photosymbiodeme).
    Green AT; Schlensog M; Sancho LG; Winkler BJ; Broom FD; Schroeter B
    Oecologia; 2002 Jan; 130(2):191-198. PubMed ID: 28547141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ photosynthetic differentiation of the green algal and the cyanobacterial photobiont in the crustose lichen Placopsis contortuplicata.
    Schroeter B
    Oecologia; 1994 Jul; 98(2):212-220. PubMed ID: 28313979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions of moisture and light drive lichen growth and the response to climate change scenarios: experimental evidence for Lobaria pulmonaria.
    Borge M; Ellis CJ
    Ann Bot; 2024 Jun; 134(1):43-58. PubMed ID: 38430562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unequal allocation of excitation energy between photosystem II and I reduces cyanolichen photosynthesis in blue light.
    Solhaug KA; Xie L; Gauslaa Y
    Plant Cell Physiol; 2014 Aug; 55(8):1404-14. PubMed ID: 24847151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in pools of depsidones and melanins, and their function, during growth and acclimation under contrasting natural light in the lichen Lobaria pulmonaria.
    McEvoy M; Gauslaa Y; Solhaug KA
    New Phytol; 2007; 175(2):271-282. PubMed ID: 17587375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Not Available].
    Rürk R; Wirth V; Lange OL
    Oecologia; 1974 Mar; 15(1):33-64. PubMed ID: 28308616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth and vitality of epiphytic lichens : II. Modelling of carbon gain using field and laboratory data.
    Sundberg B; Palmqvist K; Esseen PA; Renhorn KE
    Oecologia; 1996 Dec; 109(1):10-18. PubMed ID: 28307599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The effect of light and temperature of the CO
    Schulze ED
    Oecologia; 1972 Sep; 9(3):235-258. PubMed ID: 28313125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seasonal changes in temperature and light drive acclimation of photosynthetic physiology and macromolecular content in Lobaria pulmonaria.
    MacKenzie TD; MacDonald TM; Dubois LA; Campbell DA
    Planta; 2001 Nov; 214(1):57-66. PubMed ID: 11762171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-light stress and photoprotection in Umbilicaria antarctica monitored by chlorophyll fluorescence imaging and changes in zeaxanthin and glutathione.
    Barták M; Hájek J; Vráblíková H; Dubová J
    Plant Biol (Stuttg); 2004 May; 6(3):333-41. PubMed ID: 15143442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High thallus water content severely limits photosynthetic carbon gain of central European epilithic lichens under natural conditions.
    Lange OL; Green TG
    Oecologia; 1996 Oct; 108(1):13-20. PubMed ID: 28307728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of high light on the efficiency of photochemical energy conversion in a variety of lichen species with green and blue-green phycobionts.
    Demmig-Adams B; Máguas C; Adams WW; Meyer A; Kilian E; Lange OL
    Planta; 1990 Feb; 180(3):400-9. PubMed ID: 24202019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seasonal acclimation in the epiphytic lichen Parmelia sulcata is influenced by change in photobiont population density.
    Tretiach M; Bertuzzi S; Candotto Carniel F; Virgilio D
    Oecologia; 2013 Nov; 173(3):649-63. PubMed ID: 23604862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Curling during desiccation protects the foliose lichen Lobaria pulmonaria against photoinhibition.
    Barták M; Solhaug KA; Vráblíková H; Gauslaa Y
    Oecologia; 2006 Oct; 149(4):553-60. PubMed ID: 16804701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.