These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 23389799)
1. Mechanism for retardation of amyloid fibril formation by sugars in Vλ6 protein. Abe M; Abe Y; Ohkuri T; Mishima T; Monji A; Kanba S; Ueda T Protein Sci; 2013 Apr; 22(4):467-74. PubMed ID: 23389799 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of amyloid fibril formation in the variable domain of λ6 light chain mutant Wil caused by the interaction between its unfolded state and epigallocatechin-3-O-gallate. Abe Y; Odawara N; Aeimhirunkailas N; Shibata H; Fujisaki N; Tachibana H; Ueda T Biochim Biophys Acta Gen Subj; 2018 Dec; 1862(12):2570-2578. PubMed ID: 30251653 [TBL] [Abstract][Full Text] [Related]
3. Effect of O-glycosylation on amyloid fibril formation of the variable domain in the Vλ6 light chain mutant Wil. Abe Y; Shibata H; Oyama K; Ueda T Int J Biol Macromol; 2021 Jan; 166():342-351. PubMed ID: 33127550 [TBL] [Abstract][Full Text] [Related]
4. Effects of His mutations on the fibrillation of amyloidogenic Vlambda6 protein Wil under acidic and physiological conditions. Mishima T; Ohkuri T; Monji A; Kanemaru T; Abe Y; Ueda T Biochem Biophys Res Commun; 2010 Jan; 391(1):615-20. PubMed ID: 19932684 [TBL] [Abstract][Full Text] [Related]
5. Residual structures in the acid-unfolded states of Vlambda6 proteins affect amyloid fibrillation. Mishima T; Ohkuri T; Monji A; Kanemaru T; Abe Y; Ueda T J Mol Biol; 2009 Oct; 392(4):1033-43. PubMed ID: 19647748 [TBL] [Abstract][Full Text] [Related]
6. The monomer-seed interaction mechanism in the formation of the β2-microglobulin amyloid fibril clarified by solution NMR techniques. Yanagi K; Sakurai K; Yoshimura Y; Konuma T; Lee YH; Sugase K; Ikegami T; Naiki H; Goto Y J Mol Biol; 2012 Sep; 422(3):390-402. PubMed ID: 22683352 [TBL] [Abstract][Full Text] [Related]
7. Structural basis of light chain amyloidogenicity: comparison of the thermodynamic properties, fibrillogenic potential and tertiary structural features of four Vlambda6 proteins. Wall JS; Gupta V; Wilkerson M; Schell M; Loris R; Adams P; Solomon A; Stevens F; Dealwis C J Mol Recognit; 2004; 17(4):323-31. PubMed ID: 15227639 [TBL] [Abstract][Full Text] [Related]
8. Partially folded intermediates as critical precursors of light chain amyloid fibrils and amorphous aggregates. Khurana R; Gillespie JR; Talapatra A; Minert LJ; Ionescu-Zanetti C; Millett I; Fink AL Biochemistry; 2001 Mar; 40(12):3525-35. PubMed ID: 11297418 [TBL] [Abstract][Full Text] [Related]
9. Compound screening identified gossypetin and isoquercitrin as novel inhibitors for amyloid fibril formations of Vλ6 proteins associated with AL amyloidosis. Takahashi D; Matsunaga E; Yamashita T; Caaveiro JMM; Abe Y; Ueda T Biochem Biophys Res Commun; 2022 Mar; 596():22-28. PubMed ID: 35108650 [TBL] [Abstract][Full Text] [Related]
10. Amyloid formation under physiological conditions proceeds via a native-like folding intermediate. Jahn TR; Parker MJ; Homans SW; Radford SE Nat Struct Mol Biol; 2006 Mar; 13(3):195-201. PubMed ID: 16491092 [TBL] [Abstract][Full Text] [Related]
11. The intrachain disulfide bond of beta(2)-microglobulin is not essential for the immunoglobulin fold at neutral pH, but is essential for amyloid fibril formation at acidic pH. Ohhashi Y; Hagihara Y; Kozhukh G; Hoshino M; Hasegawa K; Yamaguchi I; Naiki H; Goto Y J Biochem; 2002 Jan; 131(1):45-52. PubMed ID: 11754734 [TBL] [Abstract][Full Text] [Related]
12. A Substantial Structural Conversion of the Native Monomer Leads to in-Register Parallel Amyloid Fibril Formation in Light-Chain Amyloidosis. Lecoq L; Wiegand T; Rodriguez-Alvarez FJ; Cadalbert R; Herrera GA; Del Pozo-Yauner L; Meier BH; Böckmann A Chembiochem; 2019 Apr; 20(8):1027-1031. PubMed ID: 30565364 [TBL] [Abstract][Full Text] [Related]
13. The acid-mediated denaturation pathway of transthyretin yields a conformational intermediate that can self-assemble into amyloid. Lai Z; Colón W; Kelly JW Biochemistry; 1996 May; 35(20):6470-82. PubMed ID: 8639594 [TBL] [Abstract][Full Text] [Related]
14. Localized conformational changes trigger the pH-induced fibrillogenesis of an amyloidogenic λ light chain protein. Velázquez-López I; Valdés-García G; Romero Romero S; Maya Martínez R; Leal-Cervantes AI; Costas M; Sánchez-López R; Amero C; Pastor N; Fernández Velasco DA Biochim Biophys Acta Gen Subj; 2018 Jul; 1862(7):1656-1666. PubMed ID: 29669263 [TBL] [Abstract][Full Text] [Related]
16. Reversible amyloid formation by the p53 tetramerization domain and a cancer-associated mutant. Lee AS; Galea C; DiGiammarino EL; Jun B; Murti G; Ribeiro RC; Zambetti G; Schultz CP; Kriwacki RW J Mol Biol; 2003 Mar; 327(3):699-709. PubMed ID: 12634062 [TBL] [Abstract][Full Text] [Related]
17. Mutations can cause light chains to be too stable or too unstable to form amyloid fibrils. Marin-Argany M; Güell-Bosch J; Blancas-Mejía LM; Villegas S; Ramirez-Alvarado M Protein Sci; 2015 Nov; 24(11):1829-40. PubMed ID: 26300552 [TBL] [Abstract][Full Text] [Related]
18. Denaturation and solvent effect on the conformation and fibril formation of TGFBIp. Grothe HL; Little MR; Cho AS; Huang AJ; Yuan C Mol Vis; 2009 Dec; 15():2617-26. PubMed ID: 20011632 [TBL] [Abstract][Full Text] [Related]
19. Elongation in a beta-structure promotes amyloid-like fibril formation of human lysozyme. Goda S; Takano K; Yamagata Y; Maki S; Namba K; Yutani K J Biochem; 2002 Oct; 132(4):655-61. PubMed ID: 12359083 [TBL] [Abstract][Full Text] [Related]
20. Cold denaturation of α-synuclein amyloid fibrils. Ikenoue T; Lee YH; Kardos J; Saiki M; Yagi H; Kawata Y; Goto Y Angew Chem Int Ed Engl; 2014 Jul; 53(30):7799-804. PubMed ID: 24920162 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]