These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 23390577)

  • 1. Mixed regime of light-matter interaction revealed by phase sensitive measurements of the dynamical Franz-Keldysh effect.
    Novelli F; Fausti D; Giusti F; Parmigiani F; Hoffmann M
    Sci Rep; 2013; 3():1227. PubMed ID: 23390577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attosecond dynamical Franz-Keldysh effect in polycrystalline diamond.
    Lucchini M; Sato SA; Ludwig A; Herrmann J; Volkov M; Kasmi L; Shinohara Y; Yabana K; Gallmann L; Keller U
    Science; 2016 Aug; 353(6302):916-9. PubMed ID: 27563093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Franz-Keldysh effect: excitonic versus free-carrier excitation schemes.
    Hughes S; Citrin DS
    Opt Lett; 1999 Aug; 24(15):1068-70. PubMed ID: 18073943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Franz-Keldysh effect: perturbative to nonperturbative regime.
    Hughes S; Citrin DS
    Opt Lett; 2000 Apr; 25(7):493-5. PubMed ID: 18064090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical coherent control induced by an electric field in a semiconductor: a new manifestation of the Franz-Keldysh effect.
    Wahlstrand JK; Zhang H; Choi SB; Kannan S; Dessau DS; Sipe JE; Cundiff ST
    Phys Rev Lett; 2011 Jun; 106(24):247404. PubMed ID: 21770599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-field-driven currents in graphene.
    Higuchi T; Heide C; Ullmann K; Weber HB; Hommelhoff P
    Nature; 2017 Oct; 550(7675):224-228. PubMed ID: 28953882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Study of electroreflectance spectrum and Franz-Keldysh effect at metal-GaAs interfaces].
    Wang B; Xu XX; Qin Z; Song N; Zhang CZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Aug; 28(8):1701-4. PubMed ID: 18975783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamical Franz-Keldysh Effect in Diamond in the Deep Ultraviolet Probed by Transient Absorption and Dispersion Spectroscopy Using a Miniature Beamline.
    Reislöhner J; Chen X; Kim D; Botti S; Pfeiffer AN
    Phys Rev Lett; 2023 Sep; 131(13):136902. PubMed ID: 37831988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linear and nonlinear optical response of one-dimensional semiconductors: finite-size and Franz-Keldysh effects.
    Bonabi F; Pedersen TG
    J Phys Condens Matter; 2017 Apr; 29(16):165702. PubMed ID: 28145897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electric-field-dependent photoconductivity in CdS nanowires and nanobelts: exciton ionization, Franz-Keldysh, and Stark effects.
    Li D; Zhang J; Zhang Q; Xiong Q
    Nano Lett; 2012 Jun; 12(6):2993-9. PubMed ID: 22642694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exciton ionization, Franz-Keldysh, and Stark effects in carbon nanotubes.
    Perebeinos V; Avouris P
    Nano Lett; 2007 Mar; 7(3):609-13. PubMed ID: 17261074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of the Coulomb interaction on the Franz-Keldysh effect in high-current photodetectors.
    Hu Y; Menyuk CR; Hutchinson MN; Urick VJ; Williams KJ
    Opt Lett; 2016 Feb; 41(3):456-9. PubMed ID: 26907396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dependence of the Contrast Ratio on Crystal Thickness in an Electroabsorptive Spatial Light Modulator That Uses GaAs.
    Bitou Y; Minemoto T
    Appl Opt; 1998 Dec; 37(35):8227-32. PubMed ID: 18301644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast electroabsorption at the transition between classical and quantum response.
    Chin AH; Bakker JM; Kono J
    Phys Rev Lett; 2000 Oct; 85(15):3293-6. PubMed ID: 11019324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Speed and High-Contrast Spatial Light Modulator that Uses Electroabsorption in a GaAs Single Crystal.
    Bitou Y; Ohta H; Minemoto T
    Appl Opt; 1998 Mar; 37(8):1377-85. PubMed ID: 18268725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous observation of Stark-Wannier and Franz-Keldysh regimes for different types of carriers in InxGa1-xAs/GaAs superlattices.
    Inoki CK; Ribeiro E; Lemos V; Cerdeira F; Finnie P; Roth AP
    Phys Rev B Condens Matter; 1994 Jan; 49(3):2246-2249. PubMed ID: 10011049
    [No Abstract]   [Full Text] [Related]  

  • 17. High-field terahertz bulk photovoltaic effect in lithium niobate.
    Somma C; Reimann K; Flytzanis C; Elsaesser T; Woerner M
    Phys Rev Lett; 2014 Apr; 112(14):146602. PubMed ID: 24765999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coherent Excitation of Optical Phonons in GaAs by Broadband Terahertz Pulses.
    Fu Z; Yamaguchi M
    Sci Rep; 2016 Dec; 6():38264. PubMed ID: 27905563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carrier-envelope-offset phase control of ultrafast optical rectification in resonantly excited semiconductors.
    Van Vlack C; Hughes S
    Phys Rev Lett; 2007 Apr; 98(16):167404. PubMed ID: 17501461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Franz-Keldysh and band-filling effects in the electroreflectance of highly doped p-type GaAs.
    Gilman JM; Hamnett A; Batchelor RA
    Phys Rev B Condens Matter; 1992 Nov; 46(20):13363-13370. PubMed ID: 10003383
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.