BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 23390581)

  • 1. An optical assay of the transport activity of ClC-7.
    Zanardi I; Zifarelli G; Pusch M
    Sci Rep; 2013; 3():1231. PubMed ID: 23390581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of chloride channels in osteoclasts: ClC-7 as a target for osteoporosis treatment.
    Schaller S; Henriksen K; Sørensen MG; Karsdal MA
    Drug News Perspect; 2005 Oct; 18(8):489-95. PubMed ID: 16391718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular ClC-3 chloride channels promote bone resorption in vitro through organelle acidification in mouse osteoclasts.
    Okamoto F; Kajiya H; Toh K; Uchida S; Yoshikawa M; Sasaki S; Kido MA; Tanaka T; Okabe K
    Am J Physiol Cell Physiol; 2008 Mar; 294(3):C693-701. PubMed ID: 18234851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of acid flux in osteoclasts from patients harboring a G215R mutation in ClC-7.
    Henriksen K; Gram J; Neutzsky-Wulff AV; Jensen VK; Dziegiel MH; Bollerslev J; Karsdal MA
    Biochem Biophys Res Commun; 2009 Jan; 378(4):804-9. PubMed ID: 19070589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathobiologic Mechanisms of Neurodegeneration in Osteopetrosis Derived From Structural and Functional Analysis of 14 ClC-7 Mutants.
    Di Zanni E; Palagano E; Lagostena L; Strina D; Rehman A; Abinun M; De Somer L; Martire B; Brown J; Kariminejad A; Balasubramaniam S; Baynam G; Gurrieri F; Pisanti MA; De Maggio I; Abboud MR; Chiesa R; Burren CP; Villa A; Sobacchi C; Picollo A
    J Bone Miner Res; 2021 Mar; 36(3):531-545. PubMed ID: 33125761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion transporters involved in acidification of the resorption lacuna in osteoclasts.
    Henriksen K; Sørensen MG; Jensen VK; Dziegiel MH; Nosjean O; Karsdal MA
    Calcif Tissue Int; 2008 Sep; 83(3):230-42. PubMed ID: 18787885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Cl-/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes.
    Graves AR; Curran PK; Smith CL; Mindell JA
    Nature; 2008 Jun; 453(7196):788-92. PubMed ID: 18449189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Channel-like slippage modes in the human anion/proton exchanger ClC-4.
    Alekov AK; Fahlke C
    J Gen Physiol; 2009 May; 133(5):485-96. PubMed ID: 19364886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and validation of a potent and specific inhibitor for the CLC-2 chloride channel.
    Koster AK; Reese AL; Kuryshev Y; Wen X; McKiernan KA; Gray EE; Wu C; Huguenard JR; Maduke M; Du Bois J
    Proc Natl Acad Sci U S A; 2020 Dec; 117(51):32711-32721. PubMed ID: 33277431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impaired Autophagic Clearance with a Gain-of-Function Variant of the Lysosomal Cl
    Bose S; de Heus C; Kennedy ME; Wang F; Jentsch TJ; Klumperman J; Stauber T
    Biomolecules; 2023 Dec; 13(12):. PubMed ID: 38136669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional and transport analyses of CLCN5 genetic changes identified in Dent disease patients.
    Tang X; Brown MR; Cogal AG; Gauvin D; Harris PC; Lieske JC; Romero MF; Chang MH
    Physiol Rep; 2016 Apr; 4(8):. PubMed ID: 27117801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutamate 268 regulates transport probability of the anion/proton exchanger ClC-5.
    Grieschat M; Alekov AK
    J Biol Chem; 2012 Mar; 287(11):8101-9. PubMed ID: 22267722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins.
    Scheel O; Zdebik AA; Lourdel S; Jentsch TJ
    Nature; 2005 Jul; 436(7049):424-7. PubMed ID: 16034422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence-Based High Throughput Screening Technologies for Natural Chloride Ion Channel Blockers.
    Xu R; Xiao Y; Liu Y; Wang B; Li X; Huo C; Jia X; Hou L; Wang X
    Chem Res Toxicol; 2018 Dec; 31(12):1332-1338. PubMed ID: 30456946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proton block of the CLC-5 Cl-/H+ exchanger.
    Picollo A; Malvezzi M; Accardi A
    J Gen Physiol; 2010 Jun; 135(6):653-9. PubMed ID: 20513761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Role of the Lysosomal Cl
    Zifarelli G
    Cells; 2022 Jan; 11(3):. PubMed ID: 35159175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ClC-7 requires Ostm1 as a beta-subunit to support bone resorption and lysosomal function.
    Lange PF; Wartosch L; Jentsch TJ; Fuhrmann JC
    Nature; 2006 Mar; 440(7081):220-3. PubMed ID: 16525474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ClC-7 expression levels critically regulate bone turnover, but not gastric acid secretion.
    Supanchart C; Wartosch L; Schlack C; Kühnisch J; Felsenberg D; Fuhrmann JC; de Vernejoul MC; Jentsch TJ; Kornak U
    Bone; 2014 Jan; 58():92-102. PubMed ID: 24103576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of renal ClC-K chloride channels depends on an intact N terminus of their accessory subunit barttin.
    Wojciechowski D; Thiemann S; Schaal C; Rahtz A; de la Roche J; Begemann B; Becher T; Fischer M
    J Biol Chem; 2018 Jun; 293(22):8626-8637. PubMed ID: 29674316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proton-dependent inhibition, inverted voltage activation, and slow gating of CLC-0 Chloride Channel.
    Kwon HC; Yu Y; Fairclough RH; Chen TY
    PLoS One; 2020; 15(12):e0240704. PubMed ID: 33362212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.