These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 23390932)

  • 1. Superatom paramagnetism enables gold nanocluster heating in applied radiofrequency fields.
    McCoy RS; Choi S; Collins G; Ackerson BJ; Ackerson CJ
    ACS Nano; 2013 Mar; 7(3):2610-6. PubMed ID: 23390932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superatom Paramagnetism in Au
    Window PS; Ackerson CJ
    Inorg Chem; 2020 Mar; 59(6):3509-3512. PubMed ID: 32090558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the heating properties of platinum nanoparticles under a radiofrequency current.
    San BH; Moh SH; Kim KK
    Int J Hyperthermia; 2013; 29(2):99-105. PubMed ID: 23350813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spin polarization induced by in-plane electric and magnetic fields in two-dimensional heavy-hole systems.
    Wang CM; Liu SY; Lin Q; Lei XL; Pang MQ
    J Phys Condens Matter; 2010 Mar; 22(9):095803. PubMed ID: 21389425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tailoring the Structure of 58-Electron Gold Nanoclusters: Au
    Higaki T; Liu C; Zhou M; Luo TY; Rosi NL; Jin R
    J Am Chem Soc; 2017 Jul; 139(29):9994-10001. PubMed ID: 28661158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Negligible absorption of radiofrequency radiation by colloidal gold nanoparticles.
    Li D; Jung YS; Tan S; Kim HK; Chory E; Geller DA
    J Colloid Interface Sci; 2011 Jun; 358(1):47-53. PubMed ID: 21429501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Citrate-capped gold nanoparticle electrophoretic heat production in response to a time-varying radiofrequency electric-field.
    Corr SJ; Raoof M; Mackeyev Y; Phounsavath S; Cheney MA; Cisneros BT; Shur M; Gozin M; McNally PJ; Wilson LJ; Curley SA
    J Phys Chem C Nanomater Interfaces; 2012 Nov; 116(45):24380-24389. PubMed ID: 23795228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electric field measurements and computational modeling at ultrahigh-field MRI.
    Kangarlu A; Tang L; Ibrahim TS
    Magn Reson Imaging; 2007 Oct; 25(8):1222-6. PubMed ID: 17368794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-Temperature Magnetism in Nanoscale Gold Revealed through Variable-Temperature Magnetic Circular Dichroism Spectroscopy.
    Herbert PJ; Window P; Ackerson CJ; Knappenberger KL
    J Phys Chem Lett; 2019 Jan; 10(2):189-193. PubMed ID: 30582816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The generation of intense radiofrequency fields in microcoils.
    Hagaman EW; Jiao J; Moore T
    J Magn Reson; 2008 Jul; 193(1):150-2. PubMed ID: 18455455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Periodic thermodynamics of the Rabi model with circular polarization for arbitrary spin quantum numbers.
    Schmidt HJ; Schnack J; Holthaus M
    Phys Rev E; 2019 Oct; 100(4-1):042141. PubMed ID: 31771001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab initio study of thiolate-protected Au102 nanocluster.
    Gao Y; Shao N; Zeng XC
    ACS Nano; 2008 Jul; 2(7):1497-503. PubMed ID: 19206321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical analysis of the superatom model for sulfur-stabilized gold nanoparticles.
    Reimers JR; Wang Y; Cankurtaran BO; Ford MJ
    J Am Chem Soc; 2010 Jun; 132(24):8378-84. PubMed ID: 20518461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility of new heating method of hepatic parenchyma using a sintered MgFe2O4 needle under an alternating magnetic field.
    Sato K; Watanabe Y; Horiuchi A; Yukumi S; Doi T; Yoshida M; Yamamoto Y; Tsunooka N; Kawachi K
    J Surg Res; 2008 May; 146(1):110-6. PubMed ID: 18155250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophoretic Mechanism of Au
    Collins CB; Tofanelli MA; Noblitt SD; Ackerson CJ
    J Phys Chem Lett; 2018 Apr; 9(7):1516-1521. PubMed ID: 29521094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unique heating curves generated by radiofrequency electric-field interactions with semi-aqueous solutions.
    Lara NC; Haider AA; Wilson LJ; Curley SA; Corr SJ
    Appl Phys Lett; 2017 Jan; 110(1):013701. PubMed ID: 28104923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Error sources affecting thermocouple thermometry in RF electromagnetic fields.
    Chakraborty DP; Brezovich IA
    J Microw Power; 1982 Mar; 17(1):17-28. PubMed ID: 6921255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Technical aspects of radiofrequency.
    Sluijter M; Racz G
    Pain Pract; 2002 Sep; 2(3):195-200. PubMed ID: 17147730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning molecular orbitals in molecular electronics and spintronics.
    Kim WY; Kim KS
    Acc Chem Res; 2010 Jan; 43(1):111-20. PubMed ID: 19769353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heating of cardiovascular stents in intense radiofrequency magnetic fields.
    Foster KR; Goldberg R; Bonsignore C
    Bioelectromagnetics; 1999; 20(2):112-6. PubMed ID: 10029137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.