These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
380 related articles for article (PubMed ID: 23391033)
61. Molar fracture resistance after adhesive restoration with ceramic inlays or resin-based composites. Bremer BD; Geurtsen W Am J Dent; 2001 Aug; 14(4):216-20. PubMed ID: 11699740 [TBL] [Abstract][Full Text] [Related]
62. Influence of cavity design and restorative material on the fracture resistance of maxillary premolars. Cubas GB; Camacho GB; Pereira-Cenci T; Nonaka T; Barbin EL Gen Dent; 2010; 58(2):e84-8. PubMed ID: 20236909 [TBL] [Abstract][Full Text] [Related]
63. Effect of immediate dentin sealing on the fracture strength of lithium disilicate ceramic onlays. Saadeddin N; Al-Khalil MA; Al-Adel O Swiss Dent J; 2022 Jul; 132(7-8):482-489. PubMed ID: 35477221 [TBL] [Abstract][Full Text] [Related]
64. In vitro resistance to fracture of porcelain inlays bonded to tooth. Dietschi D; Maeder M; Meyer JM; Holz J Quintessence Int; 1990 Oct; 21(10):823-31. PubMed ID: 2082415 [TBL] [Abstract][Full Text] [Related]
65. Fracture resistance of teeth restored with onlays of three contemporary tooth-colored resin-bonded restorative materials. Brunton PA; Cattell P; Burke FJ; Wilson NH J Prosthet Dent; 1999 Aug; 82(2):167-71. PubMed ID: 10424979 [TBL] [Abstract][Full Text] [Related]
66. Influence of different cavity preparation designs on fracture resistance of onlay and overlay restorations using different CAD/CAM materials. Ön Salman G; Tacír ƔH; Polat ZS; Salman A Am J Dent; 2017 Jun; 30(3):165-170. PubMed ID: 29178763 [TBL] [Abstract][Full Text] [Related]
67. Fatigue resistance of all-ceramic fixed partial dentures - Fatigue tests and finite element analysis. Heintze SD; Monreal D; Reinhardt M; Eser A; Peschke A; Reinshagen J; Rousson V Dent Mater; 2018 Mar; 34(3):494-507. PubMed ID: 29395474 [TBL] [Abstract][Full Text] [Related]
68. Masticatory fatigue, fracture resistance, and marginal discrepancy of ceramic partial crowns with and without coverage of compromised cusps. Stappert CF; Abe P; Kurths V; Gerds T; Strub JR J Adhes Dent; 2008 Feb; 10(1):41-8. PubMed ID: 18389735 [TBL] [Abstract][Full Text] [Related]
69. Effect of restoration method on fracture resistance of endodontically treated maxillary premolars. Yamada Y; Tsubota Y; Fukushima S Int J Prosthodont; 2004; 17(1):94-8. PubMed ID: 15008239 [TBL] [Abstract][Full Text] [Related]
70. In vitro evaluation of push-out bond strength of direct ceramic inlays to tooth surface with fiber-reinforced composite at the interface. Cekic I; Ergun G; Uctasli S; Lassila LV J Prosthet Dent; 2007 May; 97(5):271-8. PubMed ID: 17547945 [TBL] [Abstract][Full Text] [Related]
71. Survival rate and load to failure of premolars restored with inlays: An evaluation of different inlay fabrication methods. Pivetta Rippe M; Monaco C; Missau T; Wandscher VF; Volpe L; Scotti R; Bottino MA; Valandro LF J Prosthet Dent; 2019 Feb; 121(2):292-297. PubMed ID: 30093126 [TBL] [Abstract][Full Text] [Related]
72. Stress distributions in adhesively cemented ceramic and resin-composite Class II inlay restorations: a 3D-FEA study. Ausiello P; Rengo S; Davidson CL; Watts DC Dent Mater; 2004 Nov; 20(9):862-72. PubMed ID: 15451242 [TBL] [Abstract][Full Text] [Related]
73. Fracture resistance of all-ceramic and metal-ceramic inlays. Esquivel-Upshaw JF; Anusavice KJ; Yang MC; Lee RB Int J Prosthodont; 2001; 14(2):109-14. PubMed ID: 11843445 [TBL] [Abstract][Full Text] [Related]
74. Ceramic inlays: a case presentation and lessons learned from the literature. Boushell LW; Ritter AV J Esthet Restor Dent; 2009; 21(2):77-87. PubMed ID: 19368595 [TBL] [Abstract][Full Text] [Related]
75. In vitro study of fracture load and fracture pattern of ceramic crowns: a finite element and fractography analysis. Campos RE; Soares CJ; Quagliatto PS; Soares PV; de Oliveira OB; Santos-Filho PC; Salazar-Marocho SM J Prosthodont; 2011 Aug; 20(6):447-55. PubMed ID: 21843228 [TBL] [Abstract][Full Text] [Related]
76. Load-bearing properties of minimal-invasive monolithic lithium disilicate and zirconia occlusal onlays: finite element and theoretical analyses. Ma L; Guess PC; Zhang Y Dent Mater; 2013 Jul; 29(7):742-51. PubMed ID: 23683531 [TBL] [Abstract][Full Text] [Related]
77. Effect of immediate dentine sealing on the aging and fracture strength of lithium disilicate inlays and overlays. Hofsteenge JW; Hogeveen F; Cune MS; Gresnigt MMM J Mech Behav Biomed Mater; 2020 Oct; 110():103906. PubMed ID: 32957211 [TBL] [Abstract][Full Text] [Related]
78. Tooth-cusp preservation with lithium disilicate onlay restorations: A fatigue resistance study. Griffis E; Abd Alraheam I; Boushell L; Donovan T; Fasbinder D; Sulaiman TA J Esthet Restor Dent; 2022 Apr; 34(3):512-518. PubMed ID: 33009726 [TBL] [Abstract][Full Text] [Related]
79. Stability of endodontically treated teeth with differently invasive restorations: Adhesive vs. non-adhesive cusp stabilization. Frankenberger R; Zeilinger I; Krech M; Mörig G; Naumann M; Braun A; Krämer N; Roggendorf MJ Dent Mater; 2015 Nov; 31(11):1312-20. PubMed ID: 26411645 [TBL] [Abstract][Full Text] [Related]
80. Effect on in vitro fracture resistance of the technique used to attach lithium disilicate ceramic veneer to zirconia frameworks. Schmitter M; Schweiger M; Mueller D; Rues S Dent Mater; 2014 Feb; 30(2):122-30. PubMed ID: 24246472 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]