These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 23391133)

  • 1. Hydrolytic activities of crystalline cellulose nanofibers.
    Serizawa T; Sawada T; Okura H; Wada M
    Biomacromolecules; 2013 Mar; 14(3):613-7. PubMed ID: 23391133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dry-Spun Single-Filament Fibers Comprising Solely Cellulose Nanofibers from Bioresidue.
    Hooshmand S; Aitomäki Y; Norberg N; Mathew AP; Oksman K
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):13022-8. PubMed ID: 26017287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chirality-specific hydrolysis of amino acid substrates by cellulose nanofibers.
    Serizawa T; Sawada T; Wada M
    Chem Commun (Camb); 2013 Oct; 49(78):8827-9. PubMed ID: 23959230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning the acid/metal balance of carbon nanofiber-supported nickel catalysts for hydrolytic hydrogenation of cellulose.
    Van de Vyver S; Geboers J; Schutyser W; Dusselier M; Eloy P; Dornez E; Seo JW; Courtin CM; Gaigneaux EM; Jacobs PA; Sels BF
    ChemSusChem; 2012 Aug; 5(8):1549-58. PubMed ID: 22730195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembling behavior of cellulose nanoparticles during freeze-drying: effect of suspension concentration, particle size, crystal structure, and surface charge.
    Han J; Zhou C; Wu Y; Liu F; Wu Q
    Biomacromolecules; 2013 May; 14(5):1529-40. PubMed ID: 23544667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chitosan colloidal suspension composed of mechanically disassembled nanofibers.
    Liu D; Chang PR; Chen M; Wu Q
    J Colloid Interface Sci; 2011 Feb; 354(2):637-43. PubMed ID: 21146175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cationic-cellulose nanofibers: preparation and dyeability with anionic reactive dyes for apparel application.
    Khatri Z; Mayakrishnan G; Hirata Y; Wei K; Kim IS
    Carbohydr Polym; 2013 Jan; 91(1):434-43. PubMed ID: 23044154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topochemical synthesis and catalysis of metal nanoparticles exposed on crystalline cellulose nanofibers.
    Koga H; Tokunaga E; Hidaka M; Umemura Y; Saito T; Isogai A; Kitaoka T
    Chem Commun (Camb); 2010 Dec; 46(45):8567-9. PubMed ID: 20972506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and characterization of durum wheat (Triticum durum) straw cellulose nanofibers by electrospinning.
    Montaño-Leyva B; Rodriguez-Felix F; Torres-Chávez P; Ramirez-Wong B; López-Cervantes J; Sanchez-Machado D
    J Agric Food Chem; 2011 Feb; 59(3):870-5. PubMed ID: 21207978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic hydrolysis of native cellulose nanofibrils and other cellulose model films: effect of surface structure.
    Ahola S; Turon X; Osterberg M; Laine J; Rojas OJ
    Langmuir; 2008 Oct; 24(20):11592-9. PubMed ID: 18778090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conductive properties of TiO2/bacterial cellulose hybrid fibres.
    Gutierrez J; Tercjak A; Algar I; Retegi A; Mondragon I
    J Colloid Interface Sci; 2012 Jul; 377(1):88-93. PubMed ID: 22533997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-step dispersion of cellulose nanofibers by mechanochemical esterification in an organic solvent.
    Huang P; Wu M; Kuga S; Wang D; Wu D; Huang Y
    ChemSusChem; 2012 Dec; 5(12):2319-22. PubMed ID: 23180637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-structured bacterial cellulose with guided assembly-based biolithography (GAB).
    Bottan S; Robotti F; Jayathissa P; Hegglin A; Bahamonde N; Heredia-Guerrero JA; Bayer IS; Scarpellini A; Merker H; Lindenblatt N; Poulikakos D; Ferrari A
    ACS Nano; 2015 Jan; 9(1):206-19. PubMed ID: 25525956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation.
    Fukuzumi H; Saito T; Iwata T; Kumamoto Y; Isogai A
    Biomacromolecules; 2009 Jan; 10(1):162-5. PubMed ID: 19055320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of nanofibers from agricultural residues: wheat straw and soy hulls.
    Alemdar A; Sain M
    Bioresour Technol; 2008 Apr; 99(6):1664-71. PubMed ID: 17566731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation.
    Saito T; Kuramae R; Wohlert J; Berglund LA; Isogai A
    Biomacromolecules; 2013 Jan; 14(1):248-53. PubMed ID: 23215584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures.
    Zhou C; Chu R; Wu R; Wu Q
    Biomacromolecules; 2011 Jul; 12(7):2617-25. PubMed ID: 21574638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature/pH Smart Nanofibers with Excellent Biocompatibility and Their Dual Interactions Stimulus-Responsive Mechanism.
    He H; Shi X; Chen W; Chen R; Zhao C; Wang S
    J Agric Food Chem; 2020 Jul; 68(28):7425-7433. PubMed ID: 32559369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of the nanofibrillation of wood cellulose through sequential periodate-chlorite oxidation.
    Liimatainen H; Visanko M; Sirviö JA; Hormi OE; Niinimaki J
    Biomacromolecules; 2012 May; 13(5):1592-7. PubMed ID: 22512713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reinforcing poly(epsilon-caprolactone) nanofibers with cellulose nanocrystals.
    Zoppe JO; Peresin MS; Habibi Y; Venditti RA; Rojas OJ
    ACS Appl Mater Interfaces; 2009 Sep; 1(9):1996-2004. PubMed ID: 20355825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.