BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 23391258)

  • 1. Physical cues of biomaterials guide stem cell differentiation fate.
    Higuchi A; Ling QD; Chang Y; Hsu ST; Umezawa A
    Chem Rev; 2013 May; 113(5):3297-328. PubMed ID: 23391258
    [No Abstract]   [Full Text] [Related]  

  • 2. Using carbohydrate-based biomaterials as scaffolds to control human stem cell fate.
    Hu J; Seeberger PH; Yin J
    Org Biomol Chem; 2016 Oct; 14(37):8648-58. PubMed ID: 27530157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monolithic polymers for cell cultivation, differentiation, and tissue engineering.
    Löber A; Verch A; Schlemmer B; Höfer S; Frerich B; Buchmeiser MR
    Angew Chem Int Ed Engl; 2008; 47(47):9138-41. PubMed ID: 18925602
    [No Abstract]   [Full Text] [Related]  

  • 4. Controlling stem cell fate with material design.
    Marklein RA; Burdick JA
    Adv Mater; 2010 Jan; 22(2):175-89. PubMed ID: 20217683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of poly(L-lactide-co-caprolactone) as a scaffold for adipose stem cells in bone tissue engineering: application in a spinal fusion model.
    Vergroesen PP; Kroeze RJ; Helder MN; Smit TH
    Macromol Biosci; 2011 Jun; 11(6):722-30. PubMed ID: 21400658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Potential Application of Biomaterials in Cardiac Stem Cell Therapy.
    Sahito RG; Sureshkumar P; Sotiriadou I; Srinivasan SP; Sabour D; Hescheler J; Pfannkuche K; Sachinidis A
    Curr Med Chem; 2016; 23(6):589-602. PubMed ID: 26951086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Important contribution and necessity of stem cells scaffolds for regenerative medicine and the therapeutic applications].
    Tabata Y
    Nihon Rinsho; 2008 May; 66(5):881-6. PubMed ID: 18464505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of the cell-loading efficiency of biomaterials by inoculation with stem cell-based microspheres, in osteogenesis.
    Langenbach F; Naujoks C; Laser A; Kelz M; Kersten-Thiele P; Berr K; Depprich R; Kübler N; Kögler G; Handschel J
    J Biomater Appl; 2012 Jan; 26(5):549-64. PubMed ID: 20819916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomaterials for stem cell differentiation.
    Dawson E; Mapili G; Erickson K; Taqvi S; Roy K
    Adv Drug Deliv Rev; 2008 Jan; 60(2):215-28. PubMed ID: 17997187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Advance in research of osteoblast adhesion to bioactive materials].
    Niu X; Luo Y; Pan J; Wang Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Aug; 22(4):848-52. PubMed ID: 16156288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scaffold-based approach to direct stem cell neural and cardiovascular differentiation: an analysis of physical and biochemical effects.
    Chew SY; Low WC
    J Biomed Mater Res A; 2011 Jun; 97(3):355-74. PubMed ID: 21448997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proliferation and differentiation of adipose-derived stem cells on naturally derived scaffolds.
    Flynn LE; Prestwich GD; Semple JL; Woodhouse KA
    Biomaterials; 2008 Apr; 29(12):1862-71. PubMed ID: 18242690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Proliferation and chondrogenic differentiation of precartilaginous stem cells in self-assembling peptide nanofiber scaffolds].
    Luo W; Fan J; Ye C
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Dec; 26(12):1505-11. PubMed ID: 23316647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue engineering of ureteral grafts by seeding urothelial differentiated hADSCs onto biodegradable ureteral scaffolds.
    Shi JG; Fu WJ; Wang XX; Xu YD; Li G; Hong BF; Wang Y; Du ZY; Zhang X
    J Biomed Mater Res A; 2012 Oct; 100(10):2612-22. PubMed ID: 22615210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycosaminoglycans in Tissue Engineering: A Review.
    Sodhi H; Panitch A
    Biomolecules; 2020 Dec; 11(1):. PubMed ID: 33383795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioactive starch-based scaffolds and human adipose stem cells are a good combination for bone tissue engineering.
    Rodrigues AI; Gomes ME; Leonor IB; Reis RL
    Acta Biomater; 2012 Oct; 8(10):3765-76. PubMed ID: 22659174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional biomaterials for cartilage regeneration.
    Ge Z; Li C; Heng BC; Cao G; Yang Z
    J Biomed Mater Res A; 2012 Sep; 100(9):2526-36. PubMed ID: 22492677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled drug delivery in tissue engineering.
    Biondi M; Ungaro F; Quaglia F; Netti PA
    Adv Drug Deliv Rev; 2008 Jan; 60(2):229-42. PubMed ID: 18031864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Developments in meniscus tissue engineering research].
    Fu P; Zhang L; Wu H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Apr; 27(4):486-91. PubMed ID: 23757880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endothelial and stem cell interactions on dielectrophoretically aligned fibrous silk fibroin-chitosan scaffolds.
    Gupta V; Davis G; Gordon A; Altman AM; Reece GP; Gascoyne PR; Mathur AB
    J Biomed Mater Res A; 2010 Aug; 94(2):515-23. PubMed ID: 20186770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.