BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 23391305)

  • 1. Bimetallic cyanide-bridged coordination polymers as lithium ion cathode materials: core@shell nanoparticles with enhanced cyclability.
    Asakura D; Li CH; Mizuno Y; Okubo M; Zhou H; Talham DR
    J Am Chem Soc; 2013 Feb; 135(7):2793-9. PubMed ID: 23391305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchically Designed Cathodes Composed of Vanadium Hexacyanoferrate@Copper Hexacyanoferrate with Enhanced Cycling Stability.
    Choi TU; Baek G; Lee SG; Lee JH
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):24817-24826. PubMed ID: 32367707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries.
    Sun YK; Myung ST; Kim MH; Prakash J; Amine K
    J Am Chem Soc; 2005 Sep; 127(38):13411-8. PubMed ID: 16173775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precise electrochemical control of ferromagnetism in a cyanide-bridged bimetallic coordination polymer.
    Mizuno Y; Okubo M; Kagesawa K; Asakura D; Kudo T; Zhou H; Oh-ishi K; Okazawa A; Kojima N
    Inorg Chem; 2012 Oct; 51(19):10311-6. PubMed ID: 22978515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoinduced magnetism in core/shell Prussian blue analogue heterostructures of K(j)Ni(k)[Cr(CN)6]l·nH2O with Rb(a)Co(b)[Fe(CN)6]c·mH2O.
    Dumont MF; Knowles ES; Guiet A; Pajerowski DM; Gomez A; Kycia SW; Meisel MW; Talham DR
    Inorg Chem; 2011 May; 50(10):4295-300. PubMed ID: 21506586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Core-shell Prussian blue analogue molecular magnet Mn(1.5)[Cr(CN)6]·mH2O@Ni(1.5)[Cr(CN)6]·nH2O for hydrogen storage.
    Bhatt P; Banerjee S; Anwar S; Mukadam MD; Meena SS; Yusuf SM
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17579-88. PubMed ID: 25310858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Li ion battery materials with core-shell nanostructures.
    Su L; Jing Y; Zhou Z
    Nanoscale; 2011 Oct; 3(10):3967-83. PubMed ID: 21879116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Chemical Precipitation Method Preparing Hollow-Core-Shell Heterostructures Based on the Prussian Blue Analogs as Cathode for Sodium-Ion Batteries.
    Huang Y; Xie M; Wang Z; Jiang Y; Yao Y; Li S; Li Z; Li L; Wu F; Chen R
    Small; 2018 Jul; 14(28):e1801246. PubMed ID: 29882323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanosized heterostructures of Au@Prussian blue analogues: towards multifunctionality at the nanoscale.
    Maurin-Pasturel G; Long J; Guari Y; Godiard F; Willinger MG; Guerin C; Larionova J
    Angew Chem Int Ed Engl; 2014 Apr; 53(15):3872-6. PubMed ID: 24574155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Situ X-ray Diffraction and X-ray Absorption Spectroscopic Studies of a Lithium-Rich Layered Positive Electrode Material: Comparison of Composite and Core-Shell Structures.
    Ehi-Eromosele CO; Indris S; Bramnik NN; Sarapulova A; Trouillet V; Pfaffman L; Melinte G; Mangold S; Darma MSD; Knapp M; Ehrenberg H
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):13852-13868. PubMed ID: 32167270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nano-Ni/Co-PBA as high-performance cathode material for aqueous sodium-ion batteries.
    Zeng Y; Wang Y; Huang Z; Luo H; Tang H; Dong S; Luo P
    Nanotechnology; 2023 Sep; 34(47):. PubMed ID: 37604148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monoclinic Bimetallic Prussian Blue Analog Cathode with High Capacity and Long Life for Advanced Sodium Storage.
    Shen L; Jiang Y; Jiang Y; Ma J; Yang K; Ma H; Liu Q; Zhu N
    ACS Appl Mater Interfaces; 2022 Jun; 14(21):24332-24340. PubMed ID: 35604045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles.
    Wang C; Baer DR; Amonette JE; Engelhard MH; Antony J; Qiang Y
    J Am Chem Soc; 2009 Jul; 131(25):8824-32. PubMed ID: 19496564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic anisotropy of cyanide-bridged core and core-shell coordination nanoparticles probed by X-ray magnetic circular dichroism.
    Prado Y; Arrio MA; Volatron F; Otero E; Cartier dit Moulin C; Sainctavit P; Catala L; Mallah T
    Chemistry; 2013 May; 19(21):6685-94. PubMed ID: 23520017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell.
    Deb A; Bergmann U; Cairns EJ; Cramer SP
    J Synchrotron Radiat; 2004 Nov; 11(Pt 6):497-504. PubMed ID: 15496738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Core-Shell Heterostructured CuFe@FeFe Prussian Blue Analogue Coupling with Silver Nanoclusters via a One-Step Bioinspired Approach: Efficiently Nonlabeled Aptasensor for Detection of Bleomycin in Various Aqueous Environments.
    Zhou N; Yang L; Hu B; Song Y; He L; Chen W; Zhang Z; Liu Z; Lu S
    Anal Chem; 2018 Nov; 90(22):13624-13631. PubMed ID: 30343567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing CoHCF@FeHCF Core-Shell Structures to Enhance the Rate Performance and Cycling Stability of Sodium-Ion Batteries.
    Pan ZT; He ZH; Hou JF; Kong LB
    Small; 2023 Nov; 19(45):e2302788. PubMed ID: 37431201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel core-shell-structured Li[(Ni0.8Co0.2)0.8(Ni0.5Mn0.5)0.2]O2 via coprecipitation as positive electrode material for lithium secondary batteries.
    Sun YK; Myung ST; Shin HS; Bae YC; Yoon CS
    J Phys Chem B; 2006 Apr; 110(13):6810-5. PubMed ID: 16570989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the Origin of Enhanced Performances in Core-Shell and Concentration-Gradient Layered Oxide Cathode Materials.
    Song D; Hou P; Wang X; Shi X; Zhang L
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12864-72. PubMed ID: 26017733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.