These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 23391515)

  • 1. Modeling the electrical field created by mass neural activity.
    Privman E; Malach R; Yeshurun Y
    Neural Netw; 2013 Apr; 40():44-51. PubMed ID: 23391515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural synchrony and white matter variations in the human brain--relation between evoked γ frequency and corpus callosum morphology.
    Zaehle T; Herrmann CS
    Int J Psychophysiol; 2011 Jan; 79(1):49-54. PubMed ID: 20600369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling of prefrontal gamma amplitude and theta phase is strengthened in trace eyeblink conditioning.
    Shearkhani O; Takehara-Nishiuchi K
    Neurobiol Learn Mem; 2013 Feb; 100():117-26. PubMed ID: 23267870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical dynamics during naturalistic sensory stimulations: experiments and models.
    Mazzoni A; Brunel N; Cavallari S; Logothetis NK; Panzeri S
    J Physiol Paris; 2011; 105(1-3):2-15. PubMed ID: 21907800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural correlates of high-gamma oscillations (60-200 Hz) in macaque local field potentials and their potential implications in electrocorticography.
    Ray S; Crone NE; Niebur E; Franaszczuk PJ; Hsiao SS
    J Neurosci; 2008 Nov; 28(45):11526-36. PubMed ID: 18987189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orientation tuning properties of simple cells in area V1 derived from an approximate analysis of nonlinear neural field models.
    Wennekers T
    Neural Comput; 2001 Aug; 13(8):1721-47. PubMed ID: 11506668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchronization of β and γ oscillations in the somatosensory evoked neuromagnetic steady-state response.
    Ross B; Jamali S; Miyazaki T; Fujioka T
    Exp Neurol; 2013 Jul; 245():40-51. PubMed ID: 22955055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dynamics of EEG gamma responses to unpleasant visual stimuli: from local activity to functional connectivity.
    Martini N; Menicucci D; Sebastiani L; Bedini R; Pingitore A; Vanello N; Milanesi M; Landini L; Gemignani A
    Neuroimage; 2012 Apr; 60(2):922-32. PubMed ID: 22270349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gamma oscillatory activity in a visual discrimination task.
    Freunberger R; Klimesch W; Sauseng P; Griesmayr B; Höller Y; Pecherstorfer T; Hanslmayr S
    Brain Res Bull; 2007 Mar; 71(6):593-600. PubMed ID: 17292802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic event-related potentials: a computational bridge between neurolinguistic models and experiments.
    Barrès V; Simons A; Arbib M
    Neural Netw; 2013 Jan; 37():66-92. PubMed ID: 23177656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning alters theta amplitude, theta-gamma coupling and neuronal synchronization in inferotemporal cortex.
    Kendrick KM; Zhan Y; Fischer H; Nicol AU; Zhang X; Feng J
    BMC Neurosci; 2011 Jun; 12():55. PubMed ID: 21658251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual gamma oscillations: waves, correlations, and other phenomena, including comparison with experimental data.
    Robinson PA
    Biol Cybern; 2007 Oct; 97(4):317-35. PubMed ID: 17899164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motifs in health and disease: the promise of circuit interrogation by optogenetics.
    Tiesinga PH
    Eur J Neurosci; 2012 Jul; 36(2):2260-72. PubMed ID: 22805070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antagonistic relationship between gamma power and visual evoked potentials revealed in human visual cortex.
    Privman E; Fisch L; Neufeld MY; Kramer U; Kipervasser S; Andelman F; Yeshurun Y; Fried I; Malach R
    Cereb Cortex; 2011 Mar; 21(3):616-24. PubMed ID: 20624838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different origins of gamma rhythm and high-gamma activity in macaque visual cortex.
    Ray S; Maunsell JH
    PLoS Biol; 2011 Apr; 9(4):e1000610. PubMed ID: 21532743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The subcortical hidden side of focal motor seizures: evidence from micro-recordings and local field potentials.
    Devergnas A; Piallat B; Prabhu S; Torres N; Louis Benabid A; David O; Chabardès S
    Brain; 2012 Jul; 135(Pt 7):2263-76. PubMed ID: 22710196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does increased gamma activity in patients suffering from Parkinson's disease counteract the movement inhibiting beta activity?
    Florin E; Erasmi R; Reck C; Maarouf M; Schnitzler A; Fink GR; Timmermann L
    Neuroscience; 2013 May; 237():42-50. PubMed ID: 23391866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonuniform high-gamma (60-500 Hz) power changes dissociate cognitive task and anatomy in human cortex.
    Gaona CM; Sharma M; Freudenburg ZV; Breshears JD; Bundy DT; Roland J; Barbour DL; Schalk G; Leuthardt EC
    J Neurosci; 2011 Feb; 31(6):2091-100. PubMed ID: 21307246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LFP power spectra in V1 cortex: the graded effect of stimulus contrast.
    Henrie JA; Shapley R
    J Neurophysiol; 2005 Jul; 94(1):479-90. PubMed ID: 15703230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A neural mass model for the simulation of cortical activity estimated from high resolution EEG during cognitive or motor tasks.
    Zavaglia M; Astolfi L; Babiloni F; Ursino M
    J Neurosci Methods; 2006 Oct; 157(2):317-29. PubMed ID: 16757033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.