These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 23391931)
1. Visualization of the mycelia of wood-rotting fungi by fluorescence in situ hybridization using a peptide nucleic acid probe. Nakada Y; Nakaba S; Matsunaga H; Funada R; Yoshida M Biosci Biotechnol Biochem; 2013; 77(2):405-8. PubMed ID: 23391931 [TBL] [Abstract][Full Text] [Related]
2. Gene Expression Patterns of Wood Decay Fungi Postia placenta and Phanerochaete chrysosporium Are Influenced by Wood Substrate Composition during Degradation. Skyba O; Cullen D; Douglas CJ; Mansfield SD Appl Environ Microbiol; 2016 Jul; 82(14):4387-4400. PubMed ID: 27208101 [TBL] [Abstract][Full Text] [Related]
3. Detection of viable Yersinia pestis by fluorescence in situ hybridization using peptide nucleic acid probes. Kenny JH; Zhou Y; Schriefer ME; Bearden SW J Microbiol Methods; 2008 Oct; 75(2):293-301. PubMed ID: 18655809 [TBL] [Abstract][Full Text] [Related]
4. Advantages of peptide nucleic acid oligonucleotides for sensitive site directed 16S rRNA fluorescence in situ hybridization (FISH) detection of Campylobacter jejuni, Campylobacter coli and Campylobacter lari. Lehtola MJ; Loades CJ; Keevil CW J Microbiol Methods; 2005 Aug; 62(2):211-9. PubMed ID: 16009278 [TBL] [Abstract][Full Text] [Related]
5. Peptide nucleic acid fluorescence in situ hybridization for identification of Listeria genus, Listeria monocytogenes and Listeria ivanovii. Zhang X; Wu S; Li K; Shuai J; Dong Q; Fang W Int J Food Microbiol; 2012 Jul; 157(2):309-13. PubMed ID: 22633537 [TBL] [Abstract][Full Text] [Related]
6. Use of peptide nucleic acid-fluorescence in situ hybridization for definitive, rapid identification of five common Candida species. Reller ME; Mallonee AB; Kwiatkowski NP; Merz WG J Clin Microbiol; 2007 Nov; 45(11):3802-3. PubMed ID: 17804657 [TBL] [Abstract][Full Text] [Related]
7. Identification of Dekkera bruxellensis (Brettanomyces) from wine by fluorescence in situ hybridization using peptide nucleic acid probes. Stender H; Kurtzman C; Hyldig-Nielsen JJ; Sørensen D; Broomer A; Oliveira K; Perry-O'Keefe H; Sage A; Young B; Coull J Appl Environ Microbiol; 2001 Feb; 67(2):938-41. PubMed ID: 11157265 [TBL] [Abstract][Full Text] [Related]
8. A FRET-based assay for characterization of alternative splicing events using peptide nucleic acid fluorescence in situ hybridization. Blanco AM; Rausell L; Aguado B; Perez-Alonso M; Artero R Nucleic Acids Res; 2009 Sep; 37(17):e116. PubMed ID: 19561195 [TBL] [Abstract][Full Text] [Related]
9. Optimization of a peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) method for the detection of bacteria and disclosure of a formamide effect. Santos RS; Guimarães N; Madureira P; Azevedo NF J Biotechnol; 2014 Oct; 187():16-24. PubMed ID: 25034435 [TBL] [Abstract][Full Text] [Related]
10. A practical approach to FRET-based PNA fluorescence in situ hybridization. Blanco AM; Artero R Methods; 2010 Dec; 52(4):343-51. PubMed ID: 20654719 [TBL] [Abstract][Full Text] [Related]
11. PNA FISH: an intelligent stain for rapid diagnosis of infectious diseases. Stender H Expert Rev Mol Diagn; 2003 Sep; 3(5):649-55. PubMed ID: 14510184 [TBL] [Abstract][Full Text] [Related]
12. Multicenter evaluation of a Candida albicans peptide nucleic acid fluorescent in situ hybridization probe for characterization of yeast isolates from blood cultures. Wilson DA; Joyce MJ; Hall LS; Reller LB; Roberts GD; Hall GS; Alexander BD; Procop GW J Clin Microbiol; 2005 Jun; 43(6):2909-12. PubMed ID: 15956416 [TBL] [Abstract][Full Text] [Related]
13. Rapid identification of Staphylococcus aureus in blood cultures by a combination of fluorescence in situ hybridization using peptide nucleic acid probes and flow cytometry. Hartmann H; Stender H; Schäfer A; Autenrieth IB; Kempf VA J Clin Microbiol; 2005 Sep; 43(9):4855-7. PubMed ID: 16145158 [TBL] [Abstract][Full Text] [Related]
14. PNA fluorescent in situ hybridization (FISH) for rapid microbiology and cytogenetic analysis. Stender H; Williams B; Coull J Methods Mol Biol; 2014; 1050():167-78. PubMed ID: 24297359 [TBL] [Abstract][Full Text] [Related]
15. Direct detection and identification of Mycobacterium tuberculosis in smear-positive sputum samples by fluorescence in situ hybridization (FISH) using peptide nucleic acid (PNA) probes. Stender H; Mollerup TA; Lund K; Petersen KH; Hongmanee P; Godtfredsen SE Int J Tuberc Lung Dis; 1999 Sep; 3(9):830-7. PubMed ID: 10488893 [TBL] [Abstract][Full Text] [Related]
16. Application of PNA openers for fluorescence-based detection of bacterial DNA. Smolina I Methods Mol Biol; 2013; 1039():223-31. PubMed ID: 24026699 [TBL] [Abstract][Full Text] [Related]
17. Multicolor fluorescence in situ hybridization with peptide nucleic acid probes for enumeration of specific chromosomes in human cells. Taneja KL; Chavez EA; Coull J; Lansdorp PM Genes Chromosomes Cancer; 2001 Jan; 30(1):57-63. PubMed ID: 11107176 [TBL] [Abstract][Full Text] [Related]
18. In situ hybridisation in filamentous fungi using peptide nucleic acid probes. Teertstra WR; Lugones LG; Wösten HA Fungal Genet Biol; 2004 Dec; 41(12):1099-1103. PubMed ID: 15586449 [TBL] [Abstract][Full Text] [Related]
19. Cu(II)-induced molecular and physiological responses in the brown-rot basidiomycete Polyporales sp. KUC9061. Jang Y; Lee H; Lee SW; Choi YS; Ahn BJ; Kim GH; Kim JJ J Appl Microbiol; 2012 Oct; 113(4):790-7. PubMed ID: 22788907 [TBL] [Abstract][Full Text] [Related]
20. Application of Nucleic Acid Mimics in Fluorescence In Situ Hybridization. Oliveira R; Azevedo AS; Mendes L Methods Mol Biol; 2021; 2246():69-86. PubMed ID: 33576983 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]