These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 23392339)

  • 1. Estimating skeletal muscle fascicle curvature from B-mode ultrasound image sequences.
    Darby J; Li B; Costen N; Loram I; Hodson-Tole E
    IEEE Trans Biomed Eng; 2013 Jul; 60(7):1935-45. PubMed ID: 23392339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated tracking of muscle fascicle orientation in B-mode ultrasound images.
    Rana M; Hamarneh G; Wakeling JM
    J Biomech; 2009 Sep; 42(13):2068-73. PubMed ID: 19646699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterogeneous fascicle behavior within the biceps femoris long head at different muscle activation levels.
    Bennett HJ; Rider PM; Domire ZJ; DeVita P; Kulas AS
    J Biomech; 2014 Sep; 47(12):3050-5. PubMed ID: 25039017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning to extract muscle fascicle length changes from dynamic ultrasound images in real-time.
    Rosa LG; Zia JS; Inan OT; Sawicki GS
    PLoS One; 2021; 16(5):e0246611. PubMed ID: 34038426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. UltraTrack: Software for semi-automated tracking of muscle fascicles in sequences of B-mode ultrasound images.
    Farris DJ; Lichtwark GA
    Comput Methods Programs Biomed; 2016 May; 128():111-8. PubMed ID: 27040836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of optical flow to estimate continuous changes in muscle thickness from ultrasound image sequences.
    Li Q; Ni D; Yi W; Chen S; Wang T; Chen X
    Ultrasound Med Biol; 2013 Nov; 39(11):2194-201. PubMed ID: 23969163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic tracking of muscle fascicles in ultrasound images using localized Radon transform.
    Zhao H; Zhang LQ
    IEEE Trans Biomed Eng; 2011 Jul; 58(7):2094-101. PubMed ID: 21518657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reliability and accuracy of an automated tracking algorithm to measure controlled passive and active muscle fascicle length changes from ultrasound.
    Gillett JG; Barrett RS; Lichtwark GA
    Comput Methods Biomech Biomed Engin; 2013; 16(6):678-87. PubMed ID: 22235878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Demonstration of extended field-of-view ultrasound's potential to increase the pool of muscles for which in vivo fascicle length is measurable.
    Adkins AN; Franks PW; Murray WM
    J Biomech; 2017 Oct; 63():179-185. PubMed ID: 28882331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic measurement of pennation angle of gastrocnemius muscles during contractions based on ultrasound imaging.
    Zhou Y; Li JZ; Zhou G; Zheng YP
    Biomed Eng Online; 2012 Sep; 11():63. PubMed ID: 22943184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Obtaining Quality Extended Field-of-View Ultrasound Images of Skeletal Muscle to Measure Muscle Fascicle Length.
    Adkins AN; Murray WM
    J Vis Exp; 2020 Dec; (166):. PubMed ID: 33369599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Curvature of gastrocnemius muscle fascicles as function of muscle-tendon complex length and contraction in humans.
    Heieis J; Böcker J; D'Angelo O; Mittag U; Albracht K; Schönau E; Meyer A; Voigtmann T; Rittweger J
    Physiol Rep; 2023 Jun; 11(11):e15739. PubMed ID: 37269183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic measurement of pennation angle and fascicle length of gastrocnemius muscles using real-time ultrasound imaging.
    Zhou GQ; Chan P; Zheng YP
    Ultrasonics; 2015 Mar; 57():72-83. PubMed ID: 25465963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative Muscle Fascicle Tractography Using Brightness-Mode Ultrasound.
    Kilpatrick H; Bush E; Lockard C; Zhou X; Coolbaugh C; Damon B
    J Appl Biomech; 2023 Dec; 39(6):421-431. PubMed ID: 37793655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated regional analysis of B-mode ultrasound images of skeletal muscle movement.
    Darby J; Hodson-Tole EF; Costen N; Loram ID
    J Appl Physiol (1985); 2012 Jan; 112(2):313-27. PubMed ID: 22033532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Longitudinal enhancement of the hyperechoic regions in ultrasonography of muscles using a Gabor filter bank approach: a preparation for semi-automatic muscle fiber orientation estimation.
    Zhou Y; Zheng YP
    Ultrasound Med Biol; 2011 Apr; 37(4):665-73. PubMed ID: 21371811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo determination of fascicle curvature in contracting human skeletal muscles.
    Muramatsu T; Muraoka T; Kawakami Y; Shibayama A; Fukunaga T
    J Appl Physiol (1985); 2002 Jan; 92(1):129-34. PubMed ID: 11744651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational methods for quantifying in vivo muscle fascicle curvature from ultrasound images.
    Namburete AI; Rana M; Wakeling JM
    J Biomech; 2011 Sep; 44(14):2538-43. PubMed ID: 21840006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gastrocnemius fascicle length changes with two-joint passive movements.
    Brindle TJ; Miller JL; Lebiedowska MK; Stanhope SJ
    J Appl Biomech; 2008 Aug; 24(3):252-61. PubMed ID: 18843155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Medial gastrocnemius muscle behavior during human running and walking.
    Ishikawa M; Pakaslahti J; Komi PV
    Gait Posture; 2007 Mar; 25(3):380-4. PubMed ID: 16784858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.