BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 23393031)

  • 1. Comparative analysis of de novo transcriptome assembly.
    Clarke K; Yang Y; Marsh R; Xie L; Zhang KK
    Sci China Life Sci; 2013 Feb; 56(2):156-62. PubMed ID: 23393031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative study of de novo assembly and genome-guided assembly strategies for transcriptome reconstruction based on RNA-Seq.
    Lu B; Zeng Z; Shi T
    Sci China Life Sci; 2013 Feb; 56(2):143-55. PubMed ID: 23393030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing de novo transcriptome assembly from short-read RNA-Seq data: a comparative study.
    Zhao QY; Wang Y; Kong YM; Luo D; Li X; Hao P
    BMC Bioinformatics; 2011 Dec; 12 Suppl 14(Suppl 14):S2. PubMed ID: 22373417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A memory-efficient algorithm to obtain splicing graphs and de novo expression estimates from de Bruijn graphs of RNA-Seq data.
    Sze SH; Tarone AM
    BMC Genomics; 2014; 15 Suppl 5(Suppl 5):S6. PubMed ID: 25082000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benchmarking of de novo assembly algorithms for Nanopore data reveals optimal performance of OLC approaches.
    Cherukuri Y; Janga SC
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):507. PubMed ID: 27556636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating de Bruijn graph assemblers on 454 transcriptomic data.
    Ren X; Liu T; Dong J; Sun L; Yang J; Zhu Y; Jin Q
    PLoS One; 2012; 7(12):e51188. PubMed ID: 23236450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of De Novo Transcriptome Assemblers and k-mer Strategies Using the Killifish, Fundulus heteroclitus.
    Rana SB; Zadlock FJ; Zhang Z; Murphy WR; Bentivegna CS
    PLoS One; 2016; 11(4):e0153104. PubMed ID: 27054874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive evaluation of de novo transcriptome assembly programs and their effects on differential gene expression analysis.
    Wang S; Gribskov M
    Bioinformatics; 2017 Feb; 33(3):327-333. PubMed ID: 28172640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clover: a clustering-oriented de novo assembler for Illumina sequences.
    Hsieh MF; Lu CL; Tang CY
    BMC Bioinformatics; 2020 Nov; 21(1):528. PubMed ID: 33203354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inferring bona fide transfrags in RNA-Seq derived-transcriptome assemblies of non-model organisms.
    Mbandi SK; Hesse U; van Heusden P; Christoffels A
    BMC Bioinformatics; 2015 Feb; 16(1):58. PubMed ID: 25880035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impacts of read length and transcriptome complexity for de novo assembly: a simulation study.
    Chang Z; Wang Z; Li G
    PLoS One; 2014; 9(4):e94825. PubMed ID: 24736633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EBARDenovo: highly accurate de novo assembly of RNA-Seq with efficient chimera-detection.
    Chu HT; Hsiao WW; Chen JC; Yeh TJ; Tsai MH; Lin H; Liu YW; Lee SA; Chen CC; Tsao TT; Kao CY
    Bioinformatics; 2013 Apr; 29(8):1004-10. PubMed ID: 23457040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De Novo Plant Transcriptome Assembly and Annotation Using Illumina RNA-Seq Reads.
    Kerr SC; Gaiti F; Tanurdzic M
    Methods Mol Biol; 2019; 1933():265-275. PubMed ID: 30945191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quantitative reference transcriptome for Nematostella vectensis early embryonic development: a pipeline for de novo assembly in emerging model systems.
    Tulin S; Aguiar D; Istrail S; Smith J
    Evodevo; 2013; 4():16. PubMed ID: 23731568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion Torrent and lllumina, two complementary RNA-seq platforms for constructing the holm oak (Quercus ilex) transcriptome.
    Guerrero-Sanchez VM; Maldonado-Alconada AM; Amil-Ruiz F; Verardi A; Jorrín-Novo JV; Rey MD
    PLoS One; 2019; 14(1):e0210356. PubMed ID: 30650136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De novo transcriptome assembly for a non-model species, the blood-sucking bug Triatoma brasiliensis, a vector of Chagas disease.
    Marchant A; Mougel F; Almeida C; Jacquin-Joly E; Costa J; Harry M
    Genetica; 2015 Apr; 143(2):225-39. PubMed ID: 25233990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads.
    Xie Y; Wu G; Tang J; Luo R; Patterson J; Liu S; Huang W; He G; Gu S; Li S; Zhou X; Lam TW; Li Y; Xu X; Wong GK; Wang J
    Bioinformatics; 2014 Jun; 30(12):1660-6. PubMed ID: 24532719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembly and annotation of a non-model gastropod (Nerita melanotragus) transcriptome: a comparison of de novo assemblers.
    Amin S; Prentis PJ; Gilding EK; Pavasovic A
    BMC Res Notes; 2014 Aug; 7():488. PubMed ID: 25084827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IDBA-tran: a more robust de novo de Bruijn graph assembler for transcriptomes with uneven expression levels.
    Peng Y; Leung HC; Yiu SM; Lv MJ; Zhu XG; Chin FY
    Bioinformatics; 2013 Jul; 29(13):i326-34. PubMed ID: 23813001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence comparative analysis using networks: software for evaluating de novo transcript assembly from next-generation sequencing.
    Misner I; Bicep C; Lopez P; Halary S; Bapteste E; Lane CE
    Mol Biol Evol; 2013 Aug; 30(8):1975-86. PubMed ID: 23666209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.