These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 23393048)

  • 41. A non-living, effective model for microvascular training.
    Camargo CP; Silva DISBCE; Maluf FC; Morais-Besteiro J; Gemperli R
    Acta Cir Bras; 2017 Dec; 32(12):1087-1092. PubMed ID: 29319737
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of torsion on microarterial anastomosis patency.
    Topalan M; Bilgin SS; Ip WY; Chow SP
    Microsurgery; 2003; 23(1):56-9. PubMed ID: 12616520
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Side-to-side arterial anastomosis model in the rat internal and external carotid arteries.
    Matsumura N; Hamada H; Yamatani K; Hayashi N; Hirashima Y; Endo S
    J Reconstr Microsurg; 2001 May; 17(4):263-6. PubMed ID: 11396588
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparative use of turkey and chicken wing brachial artery models for microvascular anastomosis training.
    Abla AA; Uschold T; Preul MC; Zabramski JM
    J Neurosurg; 2011 Dec; 115(6):1231-5. PubMed ID: 21962125
    [TBL] [Abstract][Full Text] [Related]  

  • 45. End-to-patch anastomosis for microvascular transfer of free flaps with small pedicle.
    Lim SY; Yeo MS; Nicoli F; Ciudad P; Constantinides J; Kiranantawat K; Sapountzis S; Ho AC; Chen HC
    J Plast Reconstr Aesthet Surg; 2015 Apr; 68(4):559-64. PubMed ID: 25605405
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Training in microvascular surgery using a chicken wing artery.
    Hino A
    Neurosurgery; 2003 Jun; 52(6):1495-7; discussion 1497-8. PubMed ID: 12762899
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Polyurethane vessels for microvascular surgical training to reduce animal use].
    Meier SA; Lang A; Beer GM
    ALTEX; 2004; 21(3):135-8. PubMed ID: 15329777
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Experimental model for learning in vascular surgery and microsurgery: esophagus and trachea of chicken.
    Achar RA; Lozano PA; Achar BN; Pereira Filho GV; Achar E
    Acta Cir Bras; 2011 Apr; 26(2):101-6. PubMed ID: 21445471
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Novel Porcine Kidney-Based Microsurgery Training Model for Developing Basic to Advanced Microsurgical Skills.
    Dos Reis JMC; Teixeira RKC; Santos DRD; Calvo FC; de Araújo NP; de Corrêa Junior WJP; Pimentel ALJC; de Barros RSM
    J Reconstr Microsurg; 2021 Feb; 37(2):119-123. PubMed ID: 32698201
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Are mechanical microvascular anastomoses easier to learn than suture anastomoses?
    Zdolsek J; Ledin H; Lidman D
    Microsurgery; 2005; 25(8):596-8. PubMed ID: 16284953
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rat tail revascularization model for advanced microsurgery training and research.
    Sakrak T; Köse AA; Karabağli Y; Koçman AE; Ozbayoğlu AC; Cetįn C
    J Reconstr Microsurg; 2011 Sep; 27(7):391-6. PubMed ID: 21766272
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Description and implementation of an ex vivo simulator kit for developing microsurgery skills.
    Soto-Miranda MA; Ver Halen JP
    Ann Plast Surg; 2014; 72(6):S208-12. PubMed ID: 24691333
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [VCS microclip anastomosis on blood vessels of less than 2 millimeters in diameter. Preliminary experimental study in the rat].
    Gerbault O; Arrouvel C; Servant JM; Revol M; Banzet P
    Ann Chir Plast Esthet; 1998 Feb; 43(1):27-39. PubMed ID: 9768090
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microsurgical training: the chicken thigh model.
    Marsh DJ; Norton SE; Mok J; Patel HD; Chen HC
    Ann Plast Surg; 2007 Sep; 59(3):355-6. PubMed ID: 17721235
    [No Abstract]   [Full Text] [Related]  

  • 55. A Novel Ex Vivo Training Model for Acquiring Supermicrosurgical Skills Using a Chicken Leg.
    Cifuentes IJ; Rodriguez JR; Yañez RA; Salisbury MC; Cuadra ÁJ; Varas JE; Dagnino BL
    J Reconstr Microsurg; 2016 Nov; 32(9):699-705. PubMed ID: 27542106
    [No Abstract]   [Full Text] [Related]  

  • 56. Intraluminal endoscopic evaluation of microvascular anastomosis.
    Schoffl H; Froschauer SM; Hainisch R; Hager D; Schnelzer R; Kwasny O; Huemer GM
    J Plast Reconstr Aesthet Surg; 2008; 61(4):388-92. PubMed ID: 17988970
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structured evaluation of a comprehensive microsurgical training program.
    Mattar TGDM; Santos GBD; Telles JPM; Rezende MR; Wei TH; Mattar Júnior R
    Clinics (Sao Paulo); 2021; 76():e3194. PubMed ID: 34669876
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Robotics in microsurgery: use of a surgical robot to perform a free flap in a pig.
    Katz RD; Rosson GD; Taylor JA; Singh NK
    Microsurgery; 2005; 25(7):566-9. PubMed ID: 16178007
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [From microsurgery to supermicrosurgery: Experimental feasibility study and perspectives].
    Qassemyar Q; Sinna R
    Ann Chir Plast Esthet; 2011 Dec; 56(6):518-27. PubMed ID: 21237545
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Training in microsurgical skills: Does course-based learning deliver?
    Atkins JL; Kalu PU; Lannon DA; Green CJ; Butler PE
    Microsurgery; 2005; 25(6):481-5. PubMed ID: 16142791
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.