These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 23393277)
1. Induced cold-tolerance mechanisms depend on duration of acclimation in the chill-sensitive Folsomia candida (Collembola). Waagner D; Holmstrup M; Bayley M; Sørensen JG J Exp Biol; 2013 Jun; 216(Pt 11):1991-2000. PubMed ID: 23393277 [TBL] [Abstract][Full Text] [Related]
2. Changes in membrane lipid composition following rapid cold hardening in Drosophila melanogaster. Overgaard J; Sørensen JG; Petersen SO; Loeschcke V; Holmstrup M J Insect Physiol; 2005 Nov; 51(11):1173-82. PubMed ID: 16112133 [TBL] [Abstract][Full Text] [Related]
3. Role of HSF activation for resistance to heat, cold and high-temperature knock-down. Nielsen MM; Overgaard J; Sørensen JG; Holmstrup M; Justesen J; Loeschcke V J Insect Physiol; 2005 Dec; 51(12):1320-9. PubMed ID: 16169555 [TBL] [Abstract][Full Text] [Related]
4. Anoxic stress and rapid cold hardening enhance cold tolerance of the migratory locust. Cui F; Wang H; Zhang H; Kang L Cryobiology; 2014 Oct; 69(2):243-8. PubMed ID: 25086202 [TBL] [Abstract][Full Text] [Related]
5. Combined transcriptomic and metabolomic approach uncovers molecular mechanisms of cold tolerance in a temperate flesh fly. Teets NM; Peyton JT; Ragland GJ; Colinet H; Renault D; Hahn DA; Denlinger DL Physiol Genomics; 2012 Aug; 44(15):764-77. PubMed ID: 22735925 [TBL] [Abstract][Full Text] [Related]
6. Linking membrane physical properties and low temperature tolerance in arthropods. Waagner D; Bouvrais H; Ipsen JH; Holmstrup M Cryobiology; 2013 Dec; 67(3):383-5. PubMed ID: 24080490 [TBL] [Abstract][Full Text] [Related]
7. The protective effect of rapid cold-hardening develops more quickly in frozen versus supercooled larvae of the Antarctic midge, Belgica antarctica. Kawarasaki Y; Teets NM; Denlinger DL; Lee RE J Exp Biol; 2013 Oct; 216(Pt 20):3937-45. PubMed ID: 23868837 [TBL] [Abstract][Full Text] [Related]
8. Changes in extreme cold tolerance, membrane composition and cardiac transcriptome during the first day of thermal acclimation in the porcelain crab Petrolisthes cinctipes. Ronges D; Walsh JP; Sinclair BJ; Stillman JH J Exp Biol; 2012 Jun; 215(Pt 11):1824-36. PubMed ID: 22573761 [TBL] [Abstract][Full Text] [Related]
9. A specific glycerol kinase induces rapid cold hardening of the diamondback moth, Plutella xylostella. Park Y; Kim Y J Insect Physiol; 2014 Aug; 67():56-63. PubMed ID: 24973793 [TBL] [Abstract][Full Text] [Related]
10. Combined effects of drought and cold acclimation on phospholipid fatty acid composition and cold-shock tolerance in the springtail Protaphorura fimata. Holmstrup M; Slotsbo S J Comp Physiol B; 2018 Mar; 188(2):225-236. PubMed ID: 28965147 [TBL] [Abstract][Full Text] [Related]
11. Enhancement of supercooling capacity and survival by cold acclimation, rapid cold and heat hardening in Spodoptera exigua. Zheng X; Cheng W; Wang X; Lei C Cryobiology; 2011 Dec; 63(3):164-9. PubMed ID: 21878325 [TBL] [Abstract][Full Text] [Related]
12. Rapid cold hardening increases cold and chilling tolerances more than acclimation in the adults of the sycamore lace bug, Corythucha ciliata (Say) (Hemiptera: Tingidae). Ju RT; Xiao YY; Li B J Insect Physiol; 2011 Nov; 57(11):1577-82. PubMed ID: 21872604 [TBL] [Abstract][Full Text] [Related]
14. Integrated transcriptional and biochemical profiling suggests mechanisms associated with rapid cold hardening in adult Liriomyza trifolii (Burgess). Zhang XX; Iqbal J; Wang YC; Chang YW; Hu J; Du YZ Sci Rep; 2024 Oct; 14(1):24033. PubMed ID: 39402107 [TBL] [Abstract][Full Text] [Related]
15. Cloning and expression of five heat shock protein genes in relation to cold hardening and development in the leafminer, Liriomyza sativa. Huang LH; Wang CZ; Kang L J Insect Physiol; 2009 Mar; 55(3):279-85. PubMed ID: 19133268 [TBL] [Abstract][Full Text] [Related]
16. Membrane remodeling and glucose in Drosophila melanogaster: a test of rapid cold-hardening and chilling tolerance hypotheses. MacMillan HA; Guglielmo CG; Sinclair BJ J Insect Physiol; 2009 Mar; 55(3):243-9. PubMed ID: 19111745 [TBL] [Abstract][Full Text] [Related]
17. Rapid cold-hardening protects Drosophila melanogaster from cold-induced apoptosis. Yi SX; Moore CW; Lee RE Apoptosis; 2007 Jul; 12(7):1183-93. PubMed ID: 17245639 [TBL] [Abstract][Full Text] [Related]
18. Metabolomic profiling of rapid cold hardening and cold shock in Drosophila melanogaster. Overgaard J; Malmendal A; Sørensen JG; Bundy JG; Loeschcke V; Nielsen NC; Holmstrup M J Insect Physiol; 2007 Dec; 53(12):1218-32. PubMed ID: 17662301 [TBL] [Abstract][Full Text] [Related]
19. Cold acclimation increases levels of some heat shock protein and sirtuin isoforms in threespine stickleback. Teigen LE; Orczewska JI; McLaughlin J; O'Brien KM Comp Biochem Physiol A Mol Integr Physiol; 2015 Oct; 188():139-47. PubMed ID: 26123780 [TBL] [Abstract][Full Text] [Related]