These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 23393615)

  • 1. Controllable template-assisted electrodeposition of single- and multi-walled nanotube arrays for electrochemical energy storage.
    Wang ZL; Guo R; Ding LX; Tong YX; Li GR
    Sci Rep; 2013; 3():1204. PubMed ID: 23393615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and synthesis of MnO₂/Mn/MnO₂ sandwich-structured nanotube arrays with high supercapacitive performance for electrochemical energy storage.
    Li Q; Wang ZL; Li GR; Guo R; Ding LX; Tong YX
    Nano Lett; 2012 Jul; 12(7):3803-7. PubMed ID: 22730918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photo-assisted synthesis of coaxial-structured polypyrrole/electrochemically hydrogenated TiO
    Liu J; Li J; Dai M; Hu Y; Cui J; Wang Y; Tan HH; Wu Y
    RSC Adv; 2018 Apr; 8(24):13393-13400. PubMed ID: 35542528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vertically aligned ZnO nanorod core-polypyrrole conducting polymer sheath and nanotube arrays for electrochemical supercapacitor energy storage.
    Sidhu NK; Rastogi AC
    Nanoscale Res Lett; 2014; 9(1):453. PubMed ID: 25246867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of polypyrrole/polyaniline double-walled nanotube arrays for electrochemical energy storage.
    Wang ZL; He XJ; Ye SH; Tong YX; Li GR
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):642-7. PubMed ID: 24313311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon/MnO(2) double-walled nanotube arrays with fast ion and electron transmission for high-performance supercapacitors.
    Li Q; Lu XF; Xu H; Tong YX; Li GR
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2726-33. PubMed ID: 24533678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Core-double-shell, carbon nanotube@polypyrrole@MnO₂ sponge as freestanding, compressible supercapacitor electrode.
    Li P; Yang Y; Shi E; Shen Q; Shang Y; Wu S; Wei J; Wang K; Zhu H; Yuan Q; Cao A; Wu D
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):5228-34. PubMed ID: 24621200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of polypyrrole nanorod arrays for supercapacitor: effect of length of nanorods on capacitance.
    Lee S; Cho MS; Nam JD; Lee Y
    J Nanosci Nanotechnol; 2008 Oct; 8(10):5036-41. PubMed ID: 19198386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MnO2/TiN heterogeneous nanostructure design for electrochemical energy storage.
    Sherrill SA; Duay J; Gui Z; Banerjee P; Rubloff GW; Lee SB
    Phys Chem Chem Phys; 2011 Sep; 13(33):15221-6. PubMed ID: 21776451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Effective Electrodeposition Mode for Porous MnO₂/Ni Foam Composite for Asymmetric Supercapacitors.
    Tsai YC; Yang WD; Lee KC; Huang CM
    Materials (Basel); 2016 Mar; 9(4):. PubMed ID: 28773371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sol-gel assisted ZnO nanorod array template to synthesize TiO(2) nanotube arrays.
    Qiu J; Yu W; Gao X; Li X
    Nanotechnology; 2006 Sep; 17(18):4695-8. PubMed ID: 21727599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible Supercapacitor Electrodes Based on Carbon Cloth-Supported LaMnO
    Ma PP; Lei N; Yu B; Liu YK; Jiang GH; Dai JM; Li SH; Lu QL
    Nanomaterials (Basel); 2019 Nov; 9(12):. PubMed ID: 31771280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of the electrodeposition process of a polypyrrole/multi-walled carbon nanotube fiber electrode for a flexible supercapacitor.
    Ping Z; Junjie L; Yunchun L
    RSC Adv; 2022 Jun; 12(28):18134-18143. PubMed ID: 35800315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of a Hierarchical NiCo2S4@PPy Core-Shell Heterostructure Nanotube Array on Ni Foam for a High-Performance Asymmetric Supercapacitor.
    Yan M; Yao Y; Wen J; Long L; Kong M; Zhang G; Liao X; Yin G; Huang Z
    ACS Appl Mater Interfaces; 2016 Sep; 8(37):24525-35. PubMed ID: 27551941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polypyrrole⁻Nickel Hydroxide Hybrid Nanowires as Future Materials for Energy Storage.
    Brzózka A; Fic K; Bogusz J; Brudzisz AM; Marzec MM; Gajewska M; Sulka GD
    Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30813485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors.
    Yu G; Hu L; Vosgueritchian M; Wang H; Xie X; McDonough JR; Cui X; Cui Y; Bao Z
    Nano Lett; 2011 Jul; 11(7):2905-11. PubMed ID: 21667923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vertical Graphene@Carbon Fiber Covered with MnO₂ Flower-Like Nanostructures via Electrodeposition for High-Performance Supercapacitors.
    Zhang Z; Xiao Y; Zhang Y; Zhang W
    J Nanosci Nanotechnol; 2019 Sep; 19(9):5864-5870. PubMed ID: 30961751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unveiling high specific energy supercapacitor from layer-by-layer assembled polypyrrole/graphene oxide|polypyrrole/manganese oxide electrode material.
    Kulandaivalu S; Suhaimi N; Sulaiman Y
    Sci Rep; 2019 Mar; 9(1):4884. PubMed ID: 30894621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ZnO@Co hybrid nanotube arrays growth from electrochemical deposition: structural, optical, photocatalytic and magnetic properties.
    Fan LY; Yu SH
    Phys Chem Chem Phys; 2009 May; 11(19):3710-7. PubMed ID: 19421482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogenated TiO2 nanotube arrays for supercapacitors.
    Lu X; Wang G; Zhai T; Yu M; Gan J; Tong Y; Li Y
    Nano Lett; 2012 Mar; 12(3):1690-6. PubMed ID: 22364294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.