These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 23393623)

  • 1. Unidirectional spaser in symmetry-broken plasmonic core-shell nanocavity.
    Meng X; Guler U; Kildishev AV; Fujita K; Tanaka K; Shalaev VM
    Sci Rep; 2013; 3():1241. PubMed ID: 23393623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Metal Nanoparticles-Graphene Nanodisks-Quantum Dots Hybrid-System-Based Spaser.
    Tohari MM; Lyras A; S AlSalhi M
    Nanomaterials (Basel); 2020 Feb; 10(3):. PubMed ID: 32120985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Demonstration of a spaser-based nanolaser.
    Noginov MA; Zhu G; Belgrave AM; Bakker R; Shalaev VM; Narimanov EE; Stout S; Herz E; Suteewong T; Wiesner U
    Nature; 2009 Aug; 460(7259):1110-2. PubMed ID: 19684572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spaser operation below threshold: autonomous vs. driven spasers.
    Andrianov ES; Pukhov AA; Dorofeenko AV; Vinogradov AP; Lisyansky AA
    Opt Express; 2015 Aug; 23(17):21983-93. PubMed ID: 26368173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wavelength-tunable spasing in the visible.
    Meng X; Kildishev AV; Fujita K; Tanaka K; Shalaev VM
    Nano Lett; 2013 Sep; 13(9):4106-12. PubMed ID: 23915034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Open Resonator Electric Spaser.
    Liu B; Zhu W; Gunapala SD; Stockman MI; Premaratne M
    ACS Nano; 2017 Dec; 11(12):12573-12582. PubMed ID: 29087690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lasing Spaser in Photonic Crystals.
    Parkhomenko RG; Kuchyanov AS; Knez M; Stockman MI
    ACS Omega; 2021 Feb; 6(6):4417-4422. PubMed ID: 33623849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spaser made of graphene and carbon nanotubes.
    Rupasinghe C; Rukhlenko ID; Premaratne M
    ACS Nano; 2014 Mar; 8(3):2431-8. PubMed ID: 24559464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unidirectional Lasing from Template-Stripped Two-Dimensional Plasmonic Crystals.
    Yang A; Li Z; Knudson MP; Hryn AJ; Wang W; Aydin K; Odom TW
    ACS Nano; 2015 Dec; 9(12):11582-8. PubMed ID: 26456299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perforated semishells: far-field directional control and optical frequency magnetic response.
    Mirin NA; Ali TA; Nordlander P; Halas NJ
    ACS Nano; 2010 May; 4(5):2701-12. PubMed ID: 20429530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design optimization of spasers considering the degeneracy of excited plasmon modes.
    Rupasinghe C; Rukhlenko ID; Premaratne M
    Opt Express; 2013 Jul; 21(13):15335-49. PubMed ID: 23842320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Minimal spaser threshold within electrodynamic framework: Shape, size and modes.
    Arnold N; Hrelescu C; Klar TA
    Ann Phys; 2016 Apr; 528(3-4):295-306. PubMed ID: 27158151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-induced symmetry breaking for enhancing second-harmonic generation from an ultrathin plasmonic nanocavity.
    Li GC; Lei D; Qiu M; Jin W; Lan S; Zayats AV
    Nat Commun; 2021 Jul; 12(1):4326. PubMed ID: 34267205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmon-exciton coupling dynamics and plasmonic lasing in a core-shell nanocavity.
    Wang R; Xu C; You D; Wang X; Chen J; Shi Z; Cui Q; Qiu T
    Nanoscale; 2021 Apr; 13(14):6780-6785. PubMed ID: 33885480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems.
    Bergman DJ; Stockman MI
    Phys Rev Lett; 2003 Jan; 90(2):027402. PubMed ID: 12570577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Room temperature plasmonic lasing in a continuous wave operation mode from an InGaN/GaN single nanorod with a low threshold.
    Hou Y; Renwick P; Liu B; Bai J; Wang T
    Sci Rep; 2014 May; 4():5014. PubMed ID: 24852881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A room-temperature semiconductor spaser operating near 1.5 μm.
    Flynn RA; Kim CS; Vurgaftman I; Kim M; Meyer JR; Mäkinen AJ; Bussmann K; Cheng L; Choa FS; Long JP
    Opt Express; 2011 Apr; 19(9):8954-61. PubMed ID: 21643148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-level spaser for next-generation luminescent nanoprobe.
    Song P; Wang JH; Zhang M; Yang F; Lu HJ; Kang B; Xu JJ; Chen HY
    Sci Adv; 2018 Aug; 4(8):eaat0292. PubMed ID: 30128353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spaser Nanoparticles for Ultranarrow Bandwidth STED Super-Resolution Imaging.
    Gao Z; Wang JH; Song P; Kang B; Xu JJ; Chen HY
    Adv Mater; 2020 Mar; 32(9):e1907233. PubMed ID: 31957100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.