BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 23394101)

  • 1. The role of lamellate phospholipid bilayers in lubrication of joints.
    Pawlak Z; Urbaniak W; Gadomski A; Yusuf KQ; Afara IO; Oloyede A
    Acta Bioeng Biomech; 2012; 14(4):101-6. PubMed ID: 23394101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The amphoteric effect on friction between the bovine cartilage/cartilage surfaces under slightly sheared hydration lubrication mode.
    Pawlak Z; Gadomski A; Sojka M; Urbaniak W; Bełdowski P
    Colloids Surf B Biointerfaces; 2016 Oct; 146():452-8. PubMed ID: 27395038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Articular cartilage. Strong adsorption and cohesion of phospholipids with the quaternary ammonium cations providing satisfactory lubrication of natural joints.
    Mreła A; Pawlak Z
    Biosystems; 2019 Feb; 176():27-31. PubMed ID: 30576792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Probable Explanation for the Low Friction of Natural Joints.
    Pawlak Z; Urbaniak W; Hagner-Derengowska M; Hagner W
    Cell Biochem Biophys; 2015 Apr; 71(3):1615-21. PubMed ID: 25391892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repulsive surfaces and lamellar lubrication of synovial joints.
    Pawlak Z; Yusuf KQ; Pai R; Urbaniak W
    Arch Biochem Biophys; 2017 Jun; 623-624():42-48. PubMed ID: 28528195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Amphoteric and Hydrophilic Properties of Cartilage Surface in Mammalian Joints: Interfacial Tension and Molecular Dynamics Simulation Studies.
    Janicka K; Beldowski P; Majewski T; Urbaniak W; Petelska AD
    Molecules; 2019 Jun; 24(12):. PubMed ID: 31208115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between wettability and lubrication characteristics of the surfaces of contacting phospholipid-based membranes.
    Pawlak Z; Petelska AD; Urbaniak W; Yusuf KQ; Oloyede A
    Cell Biochem Biophys; 2013 Apr; 65(3):335-45. PubMed ID: 23099644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of hyaluronic acid on the time-dependent friction response of articular cartilage under different conditions.
    Bell CJ; Ingham E; Fisher J
    Proc Inst Mech Eng H; 2006 Jan; 220(1):23-31. PubMed ID: 16459443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dependence of nanoscale friction and adhesion properties of articular cartilage on contact load.
    Chan SM; Neu CP; Komvopoulos K; Reddi AH
    J Biomech; 2011 Apr; 44(7):1340-5. PubMed ID: 21316681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lamellar slippage of bilayers--a hypothesis on low friction of natural joints.
    Pawlak Z; Urbaniak W; Hagner-Derengowska M; Hagner W
    Biointerphases; 2014 Dec; 9(4):041004. PubMed ID: 25553879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrostatic pressurization and depletion of trapped lubricant pool during creep contact of a rippled indenter against a biphasic articular cartilage layer.
    Soltz MA; Basalo IM; Ateshian GA
    J Biomech Eng; 2003 Oct; 125(5):585-93. PubMed ID: 14618917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental friction coefficients for bovine cartilage measured with a pin-on-disk tribometer: testing configuration and lubricant effects.
    Shi L; Sikavitsas VI; Striolo A
    Ann Biomed Eng; 2011 Jan; 39(1):132-46. PubMed ID: 20872073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of lubricant entrapment at biological interfaces: reduction of friction and adhesion in articular cartilage.
    Chan SM; Neu CP; Komvopoulos K; Reddi AH
    J Biomech; 2011 Jul; 44(11):2015-20. PubMed ID: 21679953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of glycosaminoglycan depletion on the friction and deformation of articular cartilage.
    Katta J; Stapleton T; Ingham E; Jin ZM; Fisher J
    Proc Inst Mech Eng H; 2008 Jan; 222(1):1-11. PubMed ID: 18335713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microscale surface friction of articular cartilage in early osteoarthritis.
    Desrochers J; Amrein MW; Matyas JR
    J Mech Behav Biomed Mater; 2013 Sep; 25():11-22. PubMed ID: 23726921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sliding friction analysis of phosphatidylcholine as a boundary lubricant for articular cartilage.
    Williams PF; Powell GL; LaBerge M
    Proc Inst Mech Eng H; 1993; 207(1):59-66. PubMed ID: 8363698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of nominal stress on the long term friction, deformation and wear of native and glycosaminoglycan deficient articular cartilage.
    Katta J; Jin Z; Ingham E; Fisher J
    Osteoarthritis Cartilage; 2009 May; 17(5):662-8. PubMed ID: 19028431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro reversal of the load-bearing properties of lipid-depleted articular cartilage following exposure to phospholipid surfactant solutions.
    Oloyede A; Gudimetla P; Chen Y; Crawford R
    Clin Biomech (Bristol, Avon); 2008 Nov; 23(9):1200-8. PubMed ID: 18664404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comment on "Hydrostatic pressurization and depletion of trapped lubricant pool during creep contact of a rippled indenter against a biphasic articular cartilage layer".
    McCutchen CW
    J Biomech Eng; 2004 Aug; 126(4):536; author reply 537. PubMed ID: 15543874
    [No Abstract]   [Full Text] [Related]  

  • 20. Mathematical principles and methods of biological surface lubrication with phospholipids bilayers.
    Wierzcholski K; Miszczak A
    Biosystems; 2019 Apr; 178():32-40. PubMed ID: 30448537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.