These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 2339423)

  • 1. Development of a physiologically based pharmacokinetic model for chloroform.
    Corley RA; Mendrala AL; Smith FA; Staats DA; Gargas ML; Conolly RB; Andersen ME; Reitz RH
    Toxicol Appl Pharmacol; 1990 May; 103(3):512-27. PubMed ID: 2339423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating the risk of liver cancer associated with human exposures to chloroform using physiologically based pharmacokinetic modeling.
    Reitz RH; Mendrala AL; Corley RA; Quast JF; Gargas ML; Andersen ME; Staats DA; Conolly RB
    Toxicol Appl Pharmacol; 1990 Sep; 105(3):443-59. PubMed ID: 2237918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of an updated physiologically based pharmacokinetic model for chloroform to evaluate CYP2E1-mediated renal toxicity in rats and mice.
    Sasso AF; Schlosser PM; Kedderis GL; Genter MB; Snawder JE; Li Z; Rieth S; Lipscomb JC
    Toxicol Sci; 2013 Feb; 131(2):360-74. PubMed ID: 23143927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A distributed parameter physiologically-based pharmacokinetic model for dermal and inhalation exposure to volatile organic compounds.
    Roy A; Weisel CP; Lioy PJ; Georgopoulos PG
    Risk Anal; 1996 Apr; 16(2):147-60. PubMed ID: 8638037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of chloroform inhalation dose by other routes based on the relationship of area under the blood concentration-time curve (AUC)-inhalation dose to chloroform distribution in the blood of rats.
    Take M; Takeuchi T; Haresaku M; Matsumoto M; Nagano K; Yamamoto S; Takamura-Enya T; Fukushima S
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(3):253-61. PubMed ID: 24279616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chloroform distribution and accumulation by combined inhalation plus oral exposure routes in rats.
    Take M; Yamamoto S; Ohnishi M; Matsumoto M; Nagano K; Hirota T; Fukushima S
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Oct; 45(12):1616-24. PubMed ID: 20730654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo metabolism of chloroform in B6C3F1 mice determined by the method of gas uptake: the effects of body temperature on tissue partition coefficients and metabolism.
    Gearhart JM; Seckel C; Vinegar A
    Toxicol Appl Pharmacol; 1993 Apr; 119(2):258-66. PubMed ID: 8480334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The utility of PBPK in the safety assessment of chloroform and carbon tetrachloride.
    Delic JI; Lilly PD; MacDonald AJ; Loizou GD
    Regul Toxicol Pharmacol; 2000 Oct; 32(2):144-55. PubMed ID: 11067771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relative source allocation of TDI to drinking water for derivation of a criterion for chloroform: a Monte-Carlo and multi-exposure assessment.
    Niizuma S; Matsui Y; Ohno K; Itoh S; Matsushita T; Shirasaki N
    Regul Toxicol Pharmacol; 2013 Oct; 67(1):98-107. PubMed ID: 23867354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global optimization of the Michaelis-Menten parameters using physiologically-based pharmacokinetic (PBPK) modeling and chloroform vapor uptake data in F344 rats.
    Evans MV; Eklund CR; Williams DN; Sey YM; Simmons JE
    Inhal Toxicol; 2020 Feb; 32(3):97-109. PubMed ID: 32241199
    [No Abstract]   [Full Text] [Related]  

  • 11. Bayesian estimation of pharmacokinetic and pharmacodynamic parameters in a mode-of-action-based cancer risk assessment for chloroform.
    Liao KH; Tan YM; Conolly RB; Borghoff SJ; Gargas ML; Andersen ME; Clewell HJ
    Risk Anal; 2007 Dec; 27(6):1535-51. PubMed ID: 18093051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systemic uptake and clearance of chloroform by hairless rats following dermal exposure. I. Brief exposure to aqueous solutions.
    Islam MS; Zhao L; Zhou J; Dong L; McDougal JN; Flynn GL
    Risk Anal; 1996 Jun; 16(3):349-57. PubMed ID: 8693161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chloroform inhalation exposure conditions necessary to initiate liver toxicity in female B6C3F1 mice.
    Constan AA; Wong BA; Everitt JI; Butterworth BE
    Toxicol Sci; 2002 Apr; 66(2):201-8. PubMed ID: 11896286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiologically based pharmacokinetics and the risk assessment process for methylene chloride.
    Andersen ME; Clewell HJ; Gargas ML; Smith FA; Reitz RH
    Toxicol Appl Pharmacol; 1987 Feb; 87(2):185-205. PubMed ID: 3824380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro metabolism of methylene chloride in human and animal tissues: use in physiologically based pharmacokinetic models.
    Reitz RH; Mendrala AL; Guengerich FP
    Toxicol Appl Pharmacol; 1989 Feb; 97(2):230-46. PubMed ID: 2922756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dose- and route-dependent alterations in metabolism and toxicity of chemical compounds in ethanol-treated rats: difference between highly (chloroform) and poorly (carbon tetrachloride) metabolized hepatotoxic compounds.
    Wang PY; Kaneko T; Tsukada H; Nakano M; Sato A
    Toxicol Appl Pharmacol; 1997 Jan; 142(1):13-21. PubMed ID: 9007029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiologically based pharmacokinetic modeling of the pregnant rat: a multiroute exposure model for trichloroethylene and its metabolite, trichloroacetic acid.
    Fisher JW; Whittaker TA; Taylor DH; Clewell HJ; Andersen ME
    Toxicol Appl Pharmacol; 1989 Jul; 99(3):395-414. PubMed ID: 2749729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of renal carcinogenicity by combined inhalation and oral exposures to chloroform in male rats.
    Nagano K; Kano H; Arito H; Yamamoto S; Matsushima T
    J Toxicol Environ Health A; 2006 Oct; 69(20):1827-42. PubMed ID: 16952903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of Haber's rule at different ages using a physiologically based pharmacokinetic (PBPK) model for chloroform in rats.
    Evans MV; Boyes WK; Simmons JE; Litton DK; Easterling MR
    Toxicology; 2002 Jul; 176(1-2):11-23. PubMed ID: 12062926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of a physiologically based pharmacokinetic model to identify exposures consistent with human biomonitoring data for chloroform.
    Tan YM; Liao KH; Conolly RB; Blount BC; Mason AM; Clewell HJ
    J Toxicol Environ Health A; 2006 Sep; 69(18):1727-56. PubMed ID: 16864423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.