These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 23394545)

  • 1. Thyroid hormone increases fibroblast growth factor receptor expression and disrupts cell mechanics in the developing organ of corti.
    Szarama KB; Gavara N; Petralia RS; Chadwick RS; Kelley MW
    BMC Dev Biol; 2013 Feb; 13():6. PubMed ID: 23394545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fibroblast growth factor signaling regulates pillar cell development in the organ of corti.
    Mueller KL; Jacques BE; Kelley MW
    J Neurosci; 2002 Nov; 22(21):9368-77. PubMed ID: 12417662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fibroblast growth factor receptor 3 regulates microtubule formation and cell surface mechanical properties in the developing organ of Corti.
    Szarama KB; Stepanyan R; Petralia RS; Gavara N; Frolenkov GI; Kelley MW; Chadwick RS
    Bioarchitecture; 2012; 2(6):214-9. PubMed ID: 23267415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of hypothyroidism on the development of the glycogen content of organ of Corti's hair cells.
    Prieto JJ; Rueda J; Merchan JA
    Brain Res Dev Brain Res; 1990 Jan; 51(1):138-41. PubMed ID: 2297891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microtubules in the cochlea of the hypothyroid developing rat.
    Gabrion J; Legrand C; Mercier B; Harricane MC; Uziel A
    Hear Res; 1984 Mar; 13(3):203-14. PubMed ID: 6376454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The arrangements of F-actin, tubulin and fodrin in the organ of Corti of the horseshoe bat (Rhinolophus rouxi) and the gerbil (Meriones unguiculatus).
    Kuhn B; Vater M
    Hear Res; 1995 Apr; 84(1-2):139-56. PubMed ID: 7642447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytoskeletal changes in actin and microtubules underlie the developing surface mechanical properties of sensory and supporting cells in the mouse cochlea.
    Szarama KB; Gavara N; Petralia RS; Kelley MW; Chadwick RS
    Development; 2012 Jun; 139(12):2187-97. PubMed ID: 22573615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tubulin expression in the developing and adult gerbil organ of Corti.
    Hallworth R; McCoy M; Polan-Curtain J
    Hear Res; 2000 Jan; 139(1-2):31-41. PubMed ID: 10601710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fgf signaling regulates development and transdifferentiation of hair cells and supporting cells in the basilar papilla.
    Jacques BE; Dabdoub A; Kelley MW
    Hear Res; 2012 Jul; 289(1-2):27-39. PubMed ID: 22575790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of Fgfr3 leads to excess hair cell development in the mouse organ of Corti.
    Hayashi T; Cunningham D; Bermingham-McDonogh O
    Dev Dyn; 2007 Feb; 236(2):525-33. PubMed ID: 17117437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The early postnatal development of F-actin patterns in the organ of Corti of the gerbil (Meriones unguiculatus) and the horseshoe bat (Rhinolophus rouxi).
    Kuhn B; Vater M
    Hear Res; 1996 Sep; 99(1-2):47-70. PubMed ID: 8970813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Actin-binding and microtubule-associated proteins in the organ of Corti.
    Slepecky NB; Ulfendahl M
    Hear Res; 1992 Jan; 57(2):201-15. PubMed ID: 1733913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sox2 and FGF20 interact to regulate organ of Corti hair cell and supporting cell development in a spatially-graded manner.
    Yang LM; Cheah KSE; Huh SH; Ornitz DM
    PLoS Genet; 2019 Jul; 15(7):e1008254. PubMed ID: 31276493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular commitment and differentiation in the organ of Corti.
    Kelley MW
    Int J Dev Biol; 2007; 51(6-7):571-83. PubMed ID: 17891718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Dual Roles of Triiodothyronine in Regulating the Morphology of Hair Cells and Supporting Cells during Critical Periods of Mouse Cochlear Development.
    Bai X; Xu K; Xie L; Qiu Y; Chen S; Sun Y
    Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36901990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cochlear delivery of fibroblast growth factor 1 and its effects on apoptosis and cell cycling in noise-exposed guinea pig ears.
    David EA; Jackson-Boeters L; Daley T; MacRae DL
    J Otolaryngol; 2002 Oct; 31(5):304-12. PubMed ID: 12512896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Somatostatin receptor types 1 and 2 in the developing mammalian cochlea.
    Bodmer D; Brand Y; Radojevic V
    Dev Neurosci; 2012; 34(4):342-53. PubMed ID: 22986312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fgf8 induces pillar cell fate and regulates cellular patterning in the mammalian cochlea.
    Jacques BE; Montcouquiol ME; Layman EM; Lewandoski M; Kelley MW
    Development; 2007 Aug; 134(16):3021-9. PubMed ID: 17634195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Receptor-targeted delivery of an intracellular toxin to outer hair cells by fibroblast growth factor.
    Dazert S; Baird A; Ryan AF
    Hear Res; 1998 Jan; 115(1-2):143-8. PubMed ID: 9472743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tropomyosin co-localizes with actin microfilaments and microtubules within supporting cells of the inner ear.
    Slepecky N; Chamberlain SC
    Cell Tissue Res; 1987 Apr; 248(1):63-6. PubMed ID: 3552243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.