These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 23394611)

  • 1. Correlating superlattice polymorphs to internanoparticle distance, packing density, and surface lattice in assemblies of PbS nanoparticles.
    Wang Z; Schliehe C; Bian K; Dale D; Bassett WA; Hanrath T; Klinke C; Weller H
    Nano Lett; 2013 Mar; 13(3):1303-11. PubMed ID: 23394611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulating Multiple Variables To Understand the Nucleation and Growth and Transformation of PbS Nanocrystal Superlattices.
    Wang Z; Bian K; Nagaoka Y; Fan H; Cao YC
    J Am Chem Soc; 2017 Oct; 139(41):14476-14482. PubMed ID: 28953387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding Fe
    Huang X; Zhu J; Ge B; Deng K; Wu X; Xiao T; Jiang T; Quan Z; Cao YC; Wang Z
    J Am Chem Soc; 2019 Feb; 141(7):3198-3206. PubMed ID: 30685973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing the structural stability of PbS nanocrystals assembled in fcc and bcc superlattice allotropes.
    Bian K; Wang Z; Hanrath T
    J Am Chem Soc; 2012 Jul; 134(26):10787-90. PubMed ID: 22702237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoding the superlattice and interface structure of truncate PbS nanocrystal-assembled supercrystal and associated interaction forces.
    Li R; Bian K; Hanrath T; Bassett WA; Wang Z
    J Am Chem Soc; 2014 Aug; 136(34):12047-55. PubMed ID: 25100031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Role of Ligand Packing Frustration in Body-Centered Cubic (bcc) Superlattices of Colloidal Nanocrystals.
    Goodfellow BW; Yu Y; Bosoy CA; Smilgies DM; Korgel BA
    J Phys Chem Lett; 2015 Jul; 6(13):2406-12. PubMed ID: 26266710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revealing the Effects of the Non-solvent on the Ligand Shell of Nanoparticles and Their Crystallization.
    Lee B; Littrell K; Sha Y; Shevchenko EV
    J Am Chem Soc; 2019 Oct; 141(42):16651-16662. PubMed ID: 31554402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shape-anisotropy driven symmetry transformations in nanocrystal superlattice polymorphs.
    Bian K; Choi JJ; Kaushik A; Clancy P; Smilgies DM; Hanrath T
    ACS Nano; 2011 Apr; 5(4):2815-23. PubMed ID: 21344877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Softness- and Size-Dependent Packing Symmetries of Polymer-Grafted Nanoparticles.
    Yun H; Lee YJ; Xu M; Lee DC; Stein GE; Kim BJ
    ACS Nano; 2020 Aug; 14(8):9644-9651. PubMed ID: 32806057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusion-Mediated Nucleation and Growth of fcc and bcc Nanocrystal Superlattices with Designable Assembly of Freestanding 3D Supercrystals.
    Huang X; Suit E; Zhu J; Ge B; Gerdes F; Klinke C; Wang Z
    J Am Chem Soc; 2023 Mar; 145(8):4500-4507. PubMed ID: 36787491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origin of the catalytic activity of face-centered-cubic ruthenium nanoparticles determined from an atomic-scale structure.
    Kumara LS; Sakata O; Kohara S; Yang A; Song C; Kusada K; Kobayashi H; Kitagawa H
    Phys Chem Chem Phys; 2016 Nov; 18(44):30622-30629. PubMed ID: 27787531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Reduction in Particle Size Generally Causes Body-Centered-Cubic Metals to Expand but Face-Centered-Cubic Metals to Contract.
    Nafday D; Sarkar S; Ayyub P; Saha-Dasgupta T
    ACS Nano; 2018 Jul; 12(7):7246-7252. PubMed ID: 29874041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Competing Interactions between Various Entropic Forces toward Assembly of Pt3Ni Octahedra into a Body-Centered Cubic Superlattice.
    Li R; Zhang J; Tan R; Gerdes F; Luo Z; Xu H; Hollingsworth JA; Klinke C; Chen O; Wang Z
    Nano Lett; 2016 Apr; 16(4):2792-9. PubMed ID: 26977777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Situ Constructing the Kinetic Roadmap of Octahedral Nanocrystal Assembly Toward Controlled Superlattice Fabrication.
    Huang X; Zhu J; Ge B; Gerdes F; Klinke C; Wang Z
    J Am Chem Soc; 2021 Mar; 143(11):4234-4243. PubMed ID: 33687203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy landscape of self-assembled superlattices of PbSe nanocrystals.
    Quan Z; Wu D; Zhu J; Evers WH; Boncella JM; Siebbeles LD; Wang Z; Navrotsky A; Xu H
    Proc Natl Acad Sci U S A; 2014 Jun; 111(25):9054-7. PubMed ID: 24927573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-pressure behavior of hydrophobically coated gold nanoparticle supercrystals: role of the structure.
    Balédent V; Goldmann C; Ibrahim H; Pansu B
    Soft Matter; 2023 May; 19(17):3113-3120. PubMed ID: 37039530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Stability of a Nanoparticle Diamond Lattice Linked by DNA.
    Emamy H; Gang O; Starr FW
    Nanomaterials (Basel); 2019 Apr; 9(5):. PubMed ID: 31035462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling nanocrystal superlattice symmetry and shape-anisotropic interactions through variable ligand surface coverage.
    Choi JJ; Bealing CR; Bian K; Hughes KJ; Zhang W; Smilgies DM; Hennig RG; Engstrom JR; Hanrath T
    J Am Chem Soc; 2011 Mar; 133(9):3131-8. PubMed ID: 21306161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of the fcc-to-bcc phase transition in single-crystalline PdCu alloy nanoparticles.
    Jiang Y; Duchamp M; Ang SJ; Yan H; Tan TL; Mirsaidov U
    Nat Commun; 2023 Jan; 14(1):104. PubMed ID: 36609570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusion-controlled anisotropic growth of stable and metastable crystal polymorphs in the phase-field crystal model.
    Tegze G; Gránásy L; Tóth GI; Podmaniczky F; Jaatinen A; Ala-Nissila T; Pusztai T
    Phys Rev Lett; 2009 Jul; 103(3):035702. PubMed ID: 19659297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.