BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 23394719)

  • 1. Specific ligand binding domain residues confer low dioxin responsiveness to AHR1β of Xenopus laevis.
    Odio C; Holzman SA; Denison MS; Fraccalvieri D; Bonati L; Franks DG; Hahn ME; Powell WH
    Biochemistry; 2013 Mar; 52(10):1746-54. PubMed ID: 23394719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Aryl Hydrocarbon Receptor from the Salamander Ambystoma mexicanum Exhibits Low Sensitivity to 2,3,7,8-Tetrachlorodibenzo-p-dioxin.
    Shoots J; Fraccalvieri D; Franks DG; Denison MS; Hahn ME; Bonati L; Powell WH
    Environ Sci Technol; 2015 Jun; 49(11):6993-7001. PubMed ID: 25941739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An aryl hydrocarbon receptor from the caecilian Gymnopis multiplicata suggests low dioxin affinity in the ancestor of all three amphibian orders.
    Kazzaz SA; Giani Tagliabue S; Franks DG; Denison MS; Hahn ME; Bonati L; Powell WH
    Gen Comp Endocrinol; 2020 Dec; 299():113592. PubMed ID: 32858041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Responsiveness of a Xenopus laevis cell line to the aryl hydrocarbon receptor ligands 6-formylindolo[3,2-b]carbazole (FICZ) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD).
    Laub LB; Jones BD; Powell WH
    Chem Biol Interact; 2010 Jan; 183(1):202-11. PubMed ID: 19799885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subfunctionalization of Paralogous Aryl Hydrocarbon Receptors from the Frog Xenopus Laevis: Distinct Target Genes and Differential Responses to Specific Agonists in a Single Cell Type.
    Freeburg SH; Engelbrecht E; Powell WH
    Toxicol Sci; 2017 Feb; 155(2):337-347. PubMed ID: 27994169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of homology models of the AH receptor ligand binding domain: verification of structure-function predictions by site-directed mutagenesis of a nonfunctional receptor.
    Fraccalvieri D; Soshilov AA; Karchner SI; Franks DG; Pandini A; Bonati L; Hahn ME; Denison MS
    Biochemistry; 2013 Jan; 52(4):714-25. PubMed ID: 23286227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aryl hydrocarbon receptors in the frog Xenopus laevis: two AhR1 paralogs exhibit low affinity for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD).
    Lavine JA; Rowatt AJ; Klimova T; Whitington AJ; Dengler E; Beck C; Powell WH
    Toxicol Sci; 2005 Nov; 88(1):60-72. PubMed ID: 15958654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico analysis of the interaction of avian aryl hydrocarbon receptors and dioxins to decipher isoform-, ligand-, and species-specific activations.
    Hirano M; Hwang JH; Park HJ; Bak SM; Iwata H; Kim EY
    Environ Sci Technol; 2015 Mar; 49(6):3795-804. PubMed ID: 25692546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of the TCDD binding-fingerprint within the Ah receptor ligand binding domain by structurally driven mutagenesis and functional analysis.
    Pandini A; Soshilov AA; Song Y; Zhao J; Bonati L; Denison MS
    Biochemistry; 2009 Jun; 48(25):5972-83. PubMed ID: 19456125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An aryl hydrocarbon receptor repressor from Xenopus laevis: function, expression, and role in dioxin responsiveness during frog development.
    Zimmermann AL; King EA; Dengler E; Scogin SR; Powell WH
    Toxicol Sci; 2008 Jul; 104(1):124-34. PubMed ID: 18385208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the region of the aryl hydrocarbon receptor required for ligand dependency of transactivation using chimeric receptor between Drosophila and Mus musculus.
    Kudo K; Takeuchi T; Murakami Y; Ebina M; Kikuchi H
    Biochim Biophys Acta; 2009; 1789(6-8):477-86. PubMed ID: 19560568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New aryl hydrocarbon receptor homology model targeted to improve docking reliability.
    Motto I; Bordogna A; Soshilov AA; Denison MS; Bonati L
    J Chem Inf Model; 2011 Nov; 51(11):2868-81. PubMed ID: 21981577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The molecular basis for differential dioxin sensitivity in birds: role of the aryl hydrocarbon receptor.
    Karchner SI; Franks DG; Kennedy SW; Hahn ME
    Proc Natl Acad Sci U S A; 2006 Apr; 103(16):6252-7. PubMed ID: 16606854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative In Vitro and In Silico Analysis of the Selectivity of Indirubin as a Human Ah Receptor Agonist.
    Faber SC; Soshilov AA; Giani Tagliabue S; Bonati L; Denison MS
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30201897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. cDNA cloning and characterization of an aryl hydrocarbon receptor from the harbor seal (Phoca vitulina): a biomarker of dioxin susceptibility?
    Kim EY; Hahn ME
    Aquat Toxicol; 2002 Jul; 58(1-2):57-73. PubMed ID: 12062155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular and functional characterization of a novel aryl hydrocarbon receptor isoform, AHR1β, in the chicken (Gallus gallus).
    Lee JS; Iwabuchi K; Nomaru K; Nagahama N; Kim EY; Iwata H
    Toxicol Sci; 2013 Dec; 136(2):450-66. PubMed ID: 23997109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and functional characterization of the aryl hydrocarbon receptor ligand binding domain by homology modeling and mutational analysis.
    Pandini A; Denison MS; Song Y; Soshilov AA; Bonati L
    Biochemistry; 2007 Jan; 46(3):696-708. PubMed ID: 17223691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and functional characterization of two highly divergent aryl hydrocarbon receptors (AHR1 and AHR2) in the teleost Fundulus heteroclitus. Evidence for a novel subfamily of ligand-binding basic helix loop helix-Per-ARNT-Sim (bHLH-PAS) factors.
    Karchner SI; Powell WH; Hahn ME
    J Biol Chem; 1999 Nov; 274(47):33814-24. PubMed ID: 10559277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An aryl hydrocarbon receptor (AHR) homologue from the soft-shell clam, Mya arenaria: evidence that invertebrate AHR homologues lack 2,3,7,8-tetrachlorodibenzo-p-dioxin and beta-naphthoflavone binding.
    Butler RA; Kelley ML; Powell WH; Hahn ME; Van Beneden RJ
    Gene; 2001 Oct; 278(1-2):223-34. PubMed ID: 11707340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligand binding and functional selectivity of L-tryptophan metabolites at the mouse aryl hydrocarbon receptor (mAhR).
    Nuti R; Gargaro M; Matino D; Dolciami D; Grohmann U; Puccetti P; Fallarino F; Macchiarulo A
    J Chem Inf Model; 2014 Dec; 54(12):3373-83. PubMed ID: 25402742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.