These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 23395283)

  • 1. A linear programming approach to reconstructing subcellular structures from confocal images for automated generation of representative 3D cellular models.
    Wood ST; Dean BC; Dean D
    Med Image Anal; 2013 Apr; 17(3):337-47. PubMed ID: 23395283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An image model and segmentation algorithm for reflectance confocal images of in vivo cervical tissue.
    Luck BL; Carlson KD; Bovik AC; Richards-Kortum RR
    IEEE Trans Image Process; 2005 Sep; 14(9):1265-76. PubMed ID: 16190463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subcellular particles tracking in time-lapse confocal microscopy images.
    Li S; Luby-Phelps K; Zhang B; Wu X; Gao J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5973-6. PubMed ID: 22255700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Building generic anatomical models using virtual model cutting and iterative registration.
    Xiao M; Soh J; Meruvia-Pastor O; Schmidt E; Hallgrímsson B; Sensen CW
    BMC Med Imaging; 2010 Feb; 10():5. PubMed ID: 20144190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A K-means segmentation method for finding 2-D object areas based on 3-D image stacks obtained by confocal microscopy.
    Niemistö A; Korpelainen T; Saleem R; Yli-Harja O; Aitchison J; Shmulevich I
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5559-62. PubMed ID: 18003272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstruction of cellular biological structures from optical microscopy data.
    Mosaliganti K; Cooper L; Sharp R; Machiraju R; Leone G; Huang K; Saltz J
    IEEE Trans Vis Comput Graph; 2008; 14(4):863-76. PubMed ID: 18467760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fully automated approach to segmentation of irregularly shaped cellular structures in EM images.
    Lucchi A; Smith K; Achanta R; Lepetit V; Fua P
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 2):463-71. PubMed ID: 20879348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D prostate boundary segmentation from ultrasound images using 2D active shape models.
    Hodge AC; Ladak HM
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2337-40. PubMed ID: 17946106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A linear program formulation for the segmentation of Ciona membrane volumes.
    Delibaltov DL; Ghosh P; Rodoplu V; Veeman M; Smith W; Manjunath BS
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 1):444-51. PubMed ID: 24505697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi scale and slice-based approach for automatic spine detection.
    Choy SK; Chen K; Zhang Y; Baron M; Teylan MA; Kim Y; Tong CS; Song Z; Wong ST
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4765-8. PubMed ID: 21096249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Segmentation of cells from 3-D confocal images of live zebrafish embryo.
    Zanella C; Rizzi B; Melani C; Campana M; Bourgine P; Mikula K; Peyriéras N; Sarti A
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6028-31. PubMed ID: 18003388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histology to microCT data matching using landmarks and a density biased RANSAC.
    Chicherova N; Fundana K; Müller B; Cattin PC
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):243-50. PubMed ID: 25333124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computational approach to understand phenotypic structure and constitutive mechanics relationships of single cells.
    Wood ST; Dean BC; Dean D
    Ann Biomed Eng; 2013 Mar; 41(3):630-44. PubMed ID: 23180027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a semi-automated method for mitral valve modeling with medial axis representation using 3D ultrasound.
    Pouch AM; Yushkevich PA; Jackson BM; Jassar AS; Vergnat M; Gorman JH; Gorman RC; Sehgal CM
    Med Phys; 2012 Feb; 39(2):933-50. PubMed ID: 22320803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extraction of the number of peroxisomes in yeast cells by automated image analysis.
    Niemistö A; Selinummi J; Saleem R; Shmulevich I; Aitchison J; Yli-Harja O
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2353-6. PubMed ID: 17945710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cells tracking in a live zebrafish embryo.
    Melani C; Campana M; Lombardot B; Rizzi B; Veronesi F; Zanella C; Bourgine P; Mikula K; Peyriéras N; Sarti A
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1631-4. PubMed ID: 18002285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Bayesian filtering approach to incorporate 2D/3D time-lapse confocal images for tracking angiogenic sprouting cells interacting with the gel matrix.
    Ong LL; Dauwels J; Ang MH; Asada HH
    Med Image Anal; 2014 Jan; 18(1):211-27. PubMed ID: 24239653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fuzzy logic and maximum a posteriori-based image restoration for confocal microscopy.
    Vicidomini G; Mondal PP; Diaspro A
    Opt Lett; 2006 Dec; 31(24):3582-4. PubMed ID: 17130910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mesh generation from 3D multi-material images.
    Boltcheva D; Yvinec M; Boissonnat JD
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):283-90. PubMed ID: 20426123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clustering of the human skeletal muscle fibers using linear programming and angular Hilbertian metrics.
    Neji R; Besbes A; Komodakis N; Deux JF; Maatouk M; Rahmouni A; Bassez G; Fleury G; Paragios N
    Inf Process Med Imaging; 2009; 21():14-25. PubMed ID: 19694249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.