These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 23395672)

  • 41. Bioinformatic challenges in targeted proteomics.
    Reker D; Malmström L
    J Proteome Res; 2012 Sep; 11(9):4393-402. PubMed ID: 22866949
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Non-heme iron through the three domains of life.
    Andreini C; Banci L; Bertini I; Elmi S; Rosato A
    Proteins; 2007 May; 67(2):317-24. PubMed ID: 17286284
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Proteomic analysis by multidimensional protein identification technology.
    Florens L; Washburn MP
    Methods Mol Biol; 2006; 328():159-75. PubMed ID: 16785648
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Compid: a new software tool to integrate and compare MS/MS based protein identification results from Mascot and Paragon.
    Lietzén N; Natri L; Nevalainen OS; Salmi J; Nyman TA
    J Proteome Res; 2010 Dec; 9(12):6795-800. PubMed ID: 20973569
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bioinformatics approaches for the functional interpretation of protein lists: from ontology term enrichment to network analysis.
    Laukens K; Naulaerts S; Berghe WV
    Proteomics; 2015 Mar; 15(5-6):981-96. PubMed ID: 25430566
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Methods of Computational Interactomics for Investigating Interactions of Human Proteoforms.
    Poverennaya EV; Kiseleva OI; Ivanov AS; Ponomarenko EA
    Biochemistry (Mosc); 2020 Jan; 85(1):68-79. PubMed ID: 32079518
    [TBL] [Abstract][Full Text] [Related]  

  • 47. UniMaP: finding unique mass and peptide signatures in the human proteome.
    Alexandridou A; Tsangaris GT; Vougas K; Nikita K; Spyrou G
    Bioinformatics; 2009 Nov; 25(22):3035-7. PubMed ID: 19713417
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identifying components of complexes.
    Goffard N; Weiller G
    Methods Mol Biol; 2008; 453():257-65. PubMed ID: 18712308
    [TBL] [Abstract][Full Text] [Related]  

  • 49. ProteoConnections: a bioinformatics platform to facilitate proteome and phosphoproteome analyses.
    Courcelles M; Lemieux S; Voisin L; Meloche S; Thibault P
    Proteomics; 2011 Jul; 11(13):2654-71. PubMed ID: 21630457
    [TBL] [Abstract][Full Text] [Related]  

  • 50. MOLE: a data management application based on a protein production data model.
    Morris C; Wood P; Griffiths SL; Wilson KS; Ashton AW
    Proteins; 2005 Feb; 58(2):285-9. PubMed ID: 15468326
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inter-lab proteomics: data mining in collaborative projects on the basis of the HUPO brain proteome project's pilot studies.
    Hamacher M; Gröttrup B; Eisenacher M; Marcus K; Park YM; Meyer HE; Kwon KH; Stephan C
    Methods Mol Biol; 2011; 696():235-46. PubMed ID: 21063951
    [TBL] [Abstract][Full Text] [Related]  

  • 52. How do shotgun proteomics algorithms identify proteins?
    Marcotte EM
    Nat Biotechnol; 2007 Jul; 25(7):755-7. PubMed ID: 17621303
    [No Abstract]   [Full Text] [Related]  

  • 53. Salivary proteomics in biomedical research.
    Zhang A; Sun H; Wang P; Wang X
    Clin Chim Acta; 2013 Jan; 415():261-5. PubMed ID: 23146870
    [TBL] [Abstract][Full Text] [Related]  

  • 54. CHOMPER: a bioinformatic tool for rapid validation of tandem mass spectrometry search results associated with high-throughput proteomic strategies.
    Eddes JS; Kapp EA; Frecklington DF; Connolly LM; Layton MJ; Moritz RL; Simpson RJ
    Proteomics; 2002 Sep; 2(9):1097-103. PubMed ID: 12362328
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Databases and resources for in silico proteome analysis.
    Pruess M; Kersey P; Kulikova T; Apweiler R
    Methods Biochem Anal; 2006; 49():397-414. PubMed ID: 16929689
    [No Abstract]   [Full Text] [Related]  

  • 56. A statistical framework to discover true associations from multiprotein complex pull-down proteomics data sets.
    Shen C; Li L; Chen JY
    Proteins; 2006 Aug; 64(2):436-43. PubMed ID: 16705649
    [TBL] [Abstract][Full Text] [Related]  

  • 57. NERVE: new enhanced reverse vaccinology environment.
    Vivona S; Bernante F; Filippini F
    BMC Biotechnol; 2006 Jul; 6():35. PubMed ID: 16848907
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interpretation of Quantitative Shotgun Proteomic Data.
    Aasebø E; Berven FS; Selheim F; Barsnes H; Vaudel M
    Methods Mol Biol; 2016; 1394():261-273. PubMed ID: 26700055
    [TBL] [Abstract][Full Text] [Related]  

  • 59. ComplexBrowser: A Tool for Identification and Quantification of Protein Complexes in Large-scale Proteomics Datasets.
    Michalak W; Tsiamis V; Schwämmle V; Rogowska-Wrzesińska A
    Mol Cell Proteomics; 2019 Nov; 18(11):2324-2334. PubMed ID: 31447428
    [TBL] [Abstract][Full Text] [Related]  

  • 60. BioAfrica's HIV-1 proteomics resource: combining protein data with bioinformatics tools.
    Doherty RS; De Oliveira T; Seebregts C; Danaviah S; Gordon M; Cassol S
    Retrovirology; 2005 Mar; 2():18. PubMed ID: 15757512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.