These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Non-heme iron through the three domains of life. Andreini C; Banci L; Bertini I; Elmi S; Rosato A Proteins; 2007 May; 67(2):317-24. PubMed ID: 17286284 [TBL] [Abstract][Full Text] [Related]
44. Compid: a new software tool to integrate and compare MS/MS based protein identification results from Mascot and Paragon. Lietzén N; Natri L; Nevalainen OS; Salmi J; Nyman TA J Proteome Res; 2010 Dec; 9(12):6795-800. PubMed ID: 20973569 [TBL] [Abstract][Full Text] [Related]
45. Bioinformatics approaches for the functional interpretation of protein lists: from ontology term enrichment to network analysis. Laukens K; Naulaerts S; Berghe WV Proteomics; 2015 Mar; 15(5-6):981-96. PubMed ID: 25430566 [TBL] [Abstract][Full Text] [Related]
46. Methods of Computational Interactomics for Investigating Interactions of Human Proteoforms. Poverennaya EV; Kiseleva OI; Ivanov AS; Ponomarenko EA Biochemistry (Mosc); 2020 Jan; 85(1):68-79. PubMed ID: 32079518 [TBL] [Abstract][Full Text] [Related]
47. UniMaP: finding unique mass and peptide signatures in the human proteome. Alexandridou A; Tsangaris GT; Vougas K; Nikita K; Spyrou G Bioinformatics; 2009 Nov; 25(22):3035-7. PubMed ID: 19713417 [TBL] [Abstract][Full Text] [Related]
49. ProteoConnections: a bioinformatics platform to facilitate proteome and phosphoproteome analyses. Courcelles M; Lemieux S; Voisin L; Meloche S; Thibault P Proteomics; 2011 Jul; 11(13):2654-71. PubMed ID: 21630457 [TBL] [Abstract][Full Text] [Related]
50. MOLE: a data management application based on a protein production data model. Morris C; Wood P; Griffiths SL; Wilson KS; Ashton AW Proteins; 2005 Feb; 58(2):285-9. PubMed ID: 15468326 [TBL] [Abstract][Full Text] [Related]
51. Inter-lab proteomics: data mining in collaborative projects on the basis of the HUPO brain proteome project's pilot studies. Hamacher M; Gröttrup B; Eisenacher M; Marcus K; Park YM; Meyer HE; Kwon KH; Stephan C Methods Mol Biol; 2011; 696():235-46. PubMed ID: 21063951 [TBL] [Abstract][Full Text] [Related]
52. How do shotgun proteomics algorithms identify proteins? Marcotte EM Nat Biotechnol; 2007 Jul; 25(7):755-7. PubMed ID: 17621303 [No Abstract] [Full Text] [Related]
53. Salivary proteomics in biomedical research. Zhang A; Sun H; Wang P; Wang X Clin Chim Acta; 2013 Jan; 415():261-5. PubMed ID: 23146870 [TBL] [Abstract][Full Text] [Related]
54. CHOMPER: a bioinformatic tool for rapid validation of tandem mass spectrometry search results associated with high-throughput proteomic strategies. Eddes JS; Kapp EA; Frecklington DF; Connolly LM; Layton MJ; Moritz RL; Simpson RJ Proteomics; 2002 Sep; 2(9):1097-103. PubMed ID: 12362328 [TBL] [Abstract][Full Text] [Related]
55. Databases and resources for in silico proteome analysis. Pruess M; Kersey P; Kulikova T; Apweiler R Methods Biochem Anal; 2006; 49():397-414. PubMed ID: 16929689 [No Abstract] [Full Text] [Related]
56. A statistical framework to discover true associations from multiprotein complex pull-down proteomics data sets. Shen C; Li L; Chen JY Proteins; 2006 Aug; 64(2):436-43. PubMed ID: 16705649 [TBL] [Abstract][Full Text] [Related]