BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 23395696)

  • 21. Underivatized oxysterols and nanoLC-ESI-MS: A mismatch.
    Roberg-Larsen H; Vesterdal C; Wilson SR; Lundanes E
    Steroids; 2015 Jul; 99(Pt B):125-30. PubMed ID: 25668614
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hybrid 213 nm photodissociation of cationized Sterol lipid ions yield [M]
    West H; Reid GE
    Anal Chim Acta; 2021 Jan; 1141():100-109. PubMed ID: 33248642
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Propagation rate constants for the peroxidation of sterols on the biosynthetic pathway to cholesterol.
    Lamberson CR; Muchalski H; McDuffee KB; Tallman KA; Xu L; Porter NA
    Chem Phys Lipids; 2017 Oct; 207(Pt B):51-58. PubMed ID: 28174017
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determination of cholesterol oxidation products in milk powder and infant formulas by gas chromatography and mass spectrometry.
    Przygonski K; Jelen H; Wasowicz E
    Nahrung; 2000 Apr; 44(2):122-5. PubMed ID: 10795581
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantification of Oxysterol Nuclear Receptor Ligands by LC/MS/MS.
    Magomedova L; Cummins CL
    Methods Mol Biol; 2019; 1951():1-14. PubMed ID: 30825140
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dietary cholesterol oxidation products accelerate plaque destabilization and rupture associated with monocyte infiltration/activation via the MCP-1-CCR2 pathway in mouse brachiocephalic arteries: therapeutic effects of ezetimibe.
    Sato K; Nakano K; Katsuki S; Matoba T; Osada K; Sawamura T; Sunagawa K; Egashira K
    J Atheroscler Thromb; 2012; 19(11):986-98. PubMed ID: 22785139
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep mining of oxysterols and cholestenoic acids in human plasma and cerebrospinal fluid: Quantification using isotope dilution mass spectrometry.
    Yutuc E; Dickson AL; Pacciarini M; Griffiths L; Baker PRS; Connell L; Öhman A; Forsgren L; Trupp M; Vilarinho S; Khalil Y; Clayton PT; Sari S; Dalgic B; Höflinger P; Schöls L; Griffiths WJ; Wang Y
    Anal Chim Acta; 2021 Apr; 1154():338259. PubMed ID: 33736801
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of cholesterol oxidation products in biological samples.
    Diczfalusy U
    J AOAC Int; 2004; 87(2):467-73. PubMed ID: 15164842
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simultaneous determination of oxysterols, cholesterol and 25-hydroxy-vitamin D3 in human plasma by LC-UV-MS.
    Narayanaswamy R; Iyer V; Khare P; Bodziak ML; Badgett D; Zivadinov R; Weinstock-Guttman B; Rideout TC; Ramanathan M; Browne RW
    PLoS One; 2015; 10(4):e0123771. PubMed ID: 25875771
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxysterols in cosmetics-Determination by planar solid phase extraction and gas chromatography-mass spectrometry.
    Schrack S; Hohl C; Schwack W
    J Chromatogr A; 2016 Nov; 1473():10-18. PubMed ID: 28314390
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High Cholesterol Diet-Induced Changes in Oxysterol and Scavenger Receptor Levels in Heart Tissue.
    Sozen E; Yazgan B; Sahin A; Ince U; Ozer NK
    Oxid Med Cell Longev; 2018; 2018():8520746. PubMed ID: 30008986
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cholesterol oxidation products and their biological importance.
    Kulig W; Cwiklik L; Jurkiewicz P; Rog T; Vattulainen I
    Chem Phys Lipids; 2016 Sep; 199():144-160. PubMed ID: 26956952
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diabetes Retinopathy: New Ways to Detect and Treat.
    Lydic TA; Busik JV
    Methods Mol Biol; 2023; 2592():89-100. PubMed ID: 36507987
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrophilic oxysterols: generation, measurement and protein modification.
    Miyamoto S; Lima RS; Inague A; Viviani LG
    Free Radic Res; 2021 Apr; 55(4):416-440. PubMed ID: 33494620
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Additional pathways of sterol metabolism: Evidence from analysis of Cyp27a1-/- mouse brain and plasma.
    Griffiths WJ; Crick PJ; Meljon A; Theofilopoulos S; Abdel-Khalik J; Yutuc E; Parker JE; Kelly DE; Kelly SL; Arenas E; Wang Y
    Biochim Biophys Acta Mol Cell Biol Lipids; 2019 Feb; 1864(2):191-211. PubMed ID: 30471425
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxysterols in cultured bovine aortic smooth muscle cells and in the monocyte-like cell line U937.
    Pie JE; Seillan C
    Lipids; 1992 Apr; 27(4):270-4. PubMed ID: 1518384
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fast liquid chromatography-mass spectrometry reveals side chain oxysterol heterogeneity in breast cancer tumour samples.
    Solheim S; Hutchinson SA; Lundanes E; Wilson SR; Thorne JL; Roberg-Larsen H
    J Steroid Biochem Mol Biol; 2019 Sep; 192():105309. PubMed ID: 30779932
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermal Proteome Profiling Reveals Distinct Target Selectivity for Differentially Oxidized Oxysterols.
    Rossetti C; Laraia L
    ACS Chem Biol; 2022 Jul; 17(7):1677-1684. PubMed ID: 35763711
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence for the presence of 7-hydroperoxycholest-5-en-3 beta-ol in oxidized human LDL.
    Malavasi B; Rasetti MF; Roma P; Fogliatto R; Allevi P; Catapano AL; Galli G
    Chem Phys Lipids; 1992 Oct; 62(3):209-14. PubMed ID: 1468120
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.