These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 23395756)

  • 1. Key intermediates in nitrogen transformation during microwave pyrolysis of sewage sludge: a protein model compound study.
    Zhang J; Tian Y; Cui Y; Zuo W; Tan T
    Bioresour Technol; 2013 Mar; 132():57-63. PubMed ID: 23395756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrogen conversion in relation to NH3 and HCN during microwave pyrolysis of sewage sludge.
    Tian Y; Zhang J; Zuo W; Chen L; Cui Y; Tan T
    Environ Sci Technol; 2013 Apr; 47(7):3498-505. PubMed ID: 23477529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of red mud on emission control of NO
    Xiao K; Guan R; Yang J; Li H; Yu Z; Liang S; Yu W; Hu J; Hou H; Liu B
    Waste Manag; 2019 Feb; 85():452-463. PubMed ID: 30803601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen transformation during pyrolysis of oilfield sludge with high polymer content.
    Wang Y; Dong B; Fan Y; Hu Y; Zhai X; Deng C; Xu Y; Shen D; Dai X
    Chemosphere; 2019 Mar; 219():383-389. PubMed ID: 30551104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyrolysis of high-ash sewage sludge in a circulating fluidized bed reactor for production of liquids rich in heterocyclic nitrogenated compounds.
    Zuo W; Jin B; Huang Y; Sun Y; Li R; Jia J
    Bioresour Technol; 2013 Jan; 127():44-8. PubMed ID: 23131621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of bio-fuels by high temperature pyrolysis of sewage sludge using conventional and microwave heating.
    Domínguez A; Menéndez JA; Inguanzo M; Pís JJ
    Bioresour Technol; 2006 Jul; 97(10):1185-93. PubMed ID: 16473008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The important role of microwave receptors in bio-fuel production by microwave-induced pyrolysis of sewage sludge.
    Zuo W; Tian Y; Ren N
    Waste Manag; 2011 Jun; 31(6):1321-6. PubMed ID: 21353518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation on emission control of NO
    Xiao K; Yu Z; Wang H; Yang J; Liang S; Hu J; Hou H; Liu B
    Sci Total Environ; 2019 Jun; 670():932-940. PubMed ID: 30921725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfur Transformation during Microwave and Conventional Pyrolysis of Sewage Sludge.
    Zhang J; Zuo W; Tian Y; Chen L; Yin L; Zhang J
    Environ Sci Technol; 2017 Jan; 51(1):709-717. PubMed ID: 27982577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformation of Nitrogen and Evolution of N-Containing Species during Algae Pyrolysis.
    Chen W; Yang H; Chen Y; Xia M; Chen X; Chen H
    Environ Sci Technol; 2017 Jun; 51(11):6570-6579. PubMed ID: 28489946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying the fate of nitrogenous species during sewage sludge pyrolysis via in-situ tracing of protein-sludge inherent components interactions.
    Yuan Z; Ma W; Zhu N; Zhu Y; Wu S; Lou Z
    Sci Total Environ; 2023 Feb; 859(Pt 2):160437. PubMed ID: 36427709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation on the evolution of N-containing organic compounds during pyrolysis of sewage sludge.
    Tian K; Liu WJ; Qian TT; Jiang H; Yu HQ
    Environ Sci Technol; 2014 Sep; 48(18):10888-96. PubMed ID: 25141119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of temperature and composite alumina on pyrolysis of sewage sludge.
    Sun Y; Jin B; Wu W; Zuo W; Zhang Y; Zhang Y; Huang Y
    J Environ Sci (China); 2015 Apr; 30():1-8. PubMed ID: 25872704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microwave-induced pyrolysis of sewage sludge.
    Menéndez JA; Inguanzo M; Pis JJ
    Water Res; 2002 Jul; 36(13):3261-4. PubMed ID: 12188123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of a novel method to produce bio-oil from sewage sludge by microwave pyrolysis with the consideration of efficiency and safety.
    Tian Y; Zuo W; Ren Z; Chen D
    Bioresour Technol; 2011 Jan; 102(2):2053-61. PubMed ID: 20952188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast microwave-assisted catalytic pyrolysis of sewage sludge for bio-oil production.
    Xie Q; Peng P; Liu S; Min M; Cheng Y; Wan Y; Li Y; Lin X; Liu Y; Chen P; Ruan R
    Bioresour Technol; 2014 Nov; 172():162-168. PubMed ID: 25260179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative study of nitrogen conversion during pyrolysis of coconut fiber, its corresponding biochar and their blends with lignite.
    Liu Z; Balasubramanian R
    Bioresour Technol; 2014 Jan; 151():85-90. PubMed ID: 24211487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics of the microwave pyrolysis and microwave CO
    Chun YN; Jeong BR
    Environ Technol; 2018 Oct; 39(19):2484-2494. PubMed ID: 28726561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the combustion and pyrolysis of dried sewage sludge by TGA and MS.
    Magdziarz A; Werle S
    Waste Manag; 2014 Jan; 34(1):174-9. PubMed ID: 24238993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Residue characteristics of sludge from a chemical industrial plant by microwave heating pyrolysis.
    Lin KH; Lai N; Zeng JY; Chiang HL
    Environ Sci Pollut Res Int; 2018 Mar; 25(7):6487-6496. PubMed ID: 29250732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.