These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
423 related articles for article (PubMed ID: 23395766)
1. An advanced understanding of the specific effects of xylan and surface lignin contents on enzymatic hydrolysis of lignocellulosic biomass. Ju X; Engelhard M; Zhang X Bioresour Technol; 2013 Mar; 132():137-45. PubMed ID: 23395766 [TBL] [Abstract][Full Text] [Related]
2. Specific effects of fiber size and fiber swelling on biomass substrate surface area and enzymatic digestibility. Ju X; Grego C; Zhang X Bioresour Technol; 2013 Sep; 144():232-9. PubMed ID: 23871925 [TBL] [Abstract][Full Text] [Related]
3. Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin. Nakagame S; Chandra RP; Kadla JF; Saddler JN Biotechnol Bioeng; 2011 Mar; 108(3):538-48. PubMed ID: 21246506 [TBL] [Abstract][Full Text] [Related]
4. Multiple linear regression model for predicting biomass digestibility from structural features. Zhu L; O'Dwyer JP; Chang VS; Granda CB; Holtzapple MT Bioresour Technol; 2010 Jul; 101(13):4971-9. PubMed ID: 19962880 [TBL] [Abstract][Full Text] [Related]
5. Synergetic Dissolution of Branched Xylan and Lignin Opens the Way for Enzymatic Hydrolysis of Poplar Cell Wall. Zhou X; Ding D; You T; Zhang X; Takabe K; Xu F J Agric Food Chem; 2018 Apr; 66(13):3449-3456. PubMed ID: 29553741 [TBL] [Abstract][Full Text] [Related]
6. The mechanism of poly(ethylene glycol) 4000 effect on enzymatic hydrolysis of lignocellulose. Li J; Li S; Fan C; Yan Z Colloids Surf B Biointerfaces; 2012 Jan; 89():203-10. PubMed ID: 21982216 [TBL] [Abstract][Full Text] [Related]
7. Temperature sensitivity of cellulase adsorption on lignin and its impact on enzymatic hydrolysis of lignocellulosic biomass. Zheng Y; Zhang S; Miao S; Su Z; Wang P J Biotechnol; 2013 Jul; 166(3):135-43. PubMed ID: 23648794 [TBL] [Abstract][Full Text] [Related]
8. Distinct roles of residual xylan and lignin in limiting enzymatic hydrolysis of organosolv pretreated loblolly pine and sweetgum. Li M; Tu M; Cao D; Bass P; Adhikari S J Agric Food Chem; 2013 Jan; 61(3):646-54. PubMed ID: 23270516 [TBL] [Abstract][Full Text] [Related]
9. Topochemical pretreatment of wood biomass to enhance enzymatic hydrolysis of polysaccharides to sugars. Mou HY; Orblin E; Kruus K; Fardim P Bioresour Technol; 2013 Aug; 142():540-5. PubMed ID: 23774220 [TBL] [Abstract][Full Text] [Related]
10. Effect of lignocellulosic composition and structure on the bioethanol production from different poplar lines. Duan X; Zhang C; Ju X; Li Q; Chen S; Wang J; Liu Z Bioresour Technol; 2013 Jul; 140():363-7. PubMed ID: 23708852 [TBL] [Abstract][Full Text] [Related]
11. In-depth investigation of enzymatic hydrolysis of biomass wastes based on three major components: Cellulose, hemicellulose and lignin. Lin L; Yan R; Liu Y; Jiang W Bioresour Technol; 2010 Nov; 101(21):8217-23. PubMed ID: 20639116 [TBL] [Abstract][Full Text] [Related]
12. Lignin-enzyme interaction: Mechanism, mitigation approach, modeling, and research prospects. Li X; Zheng Y Biotechnol Adv; 2017 Jul; 35(4):466-489. PubMed ID: 28351654 [TBL] [Abstract][Full Text] [Related]
13. Enhanced xylanase performance in the hydrolysis of lignocellulosic materials by surfactants and non-catalytic protein. Ge X; Sun Z; Xin D; Zhang J Appl Biochem Biotechnol; 2014 Feb; 172(4):2106-18. PubMed ID: 24338209 [TBL] [Abstract][Full Text] [Related]
14. Combination of enzymatic hydrolysis and ethanol organosolv pretreatments: effect on lignin structures, delignification yields and cellulose-to-glucose conversion. Obama P; Ricochon G; Muniglia L; Brosse N Bioresour Technol; 2012 May; 112():156-63. PubMed ID: 22424922 [TBL] [Abstract][Full Text] [Related]
15. Investigation of the pellets produced from sugarcane bagasse during liquid hot water pretreatment and their impact on the enzymatic hydrolysis. Wang W; Zhuang X; Yuan Z; Yu Q; Qi W Bioresour Technol; 2015 Aug; 190():7-12. PubMed ID: 25916262 [TBL] [Abstract][Full Text] [Related]
16. Effects of the Surface Morphology and Conformations of Lignocellulosic Biomass Biopolymers on Their Nanoscale Interactions with Hydrophobic Self-Assembled Monolayers. Arslan B; Egerton K; Zhang X; Abu-Lail NI Langmuir; 2017 Jul; 33(27):6857-6868. PubMed ID: 28617601 [TBL] [Abstract][Full Text] [Related]
17. The effect of isolated lignins, obtained from a range of pretreated lignocellulosic substrates, on enzymatic hydrolysis. Nakagame S; Chandra RP; Saddler JN Biotechnol Bioeng; 2010 Apr; 105(5):871-9. PubMed ID: 19998278 [TBL] [Abstract][Full Text] [Related]
18. Surface lignin change pertaining to the integrated process of dilute acid pre-extraction and mechanical refining of poplar wood chips and its impact on enzymatic hydrolysis. Liu W; Chen W; Hou Q; Zhang J; Wang B Bioresour Technol; 2017 Mar; 228():125-132. PubMed ID: 28061394 [TBL] [Abstract][Full Text] [Related]
19. Hydrolysis kinetics of tulip tree xylan in hot compressed water. Yoon J; Lee HW; Sim S; Myint AA; Park HJ; Lee YW Bioresour Technol; 2016 Aug; 214():679-685. PubMed ID: 27208738 [TBL] [Abstract][Full Text] [Related]
20. [Progress on cellulase and enzymatic hydrolysis of lignocellulosic biomass]. Fang X; Qin Y; Li X; Wang L; Wang T; Zhu M; Qu Y Sheng Wu Gong Cheng Xue Bao; 2010 Jul; 26(7):864-9. PubMed ID: 20954385 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]