BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 23396009)

  • 21. Ultrasensitive and dual functional colorimetric sensors for mercury (II) ions and hydrogen peroxide based on catalytic reduction property of silver nanoparticles.
    Wang GL; Zhu XY; Jiao HJ; Dong YM; Li ZJ
    Biosens Bioelectron; 2012 Jan; 31(1):337-42. PubMed ID: 22093771
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analyte-induced photoreduction method for visual and colorimetric detection of tyrosine.
    Satheeshkumar E; Yang J
    Anal Chim Acta; 2015 Jun; 879():111-7. PubMed ID: 26002485
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Green solid-state based curcumin mediated rhamnolipids stabilized silver nanoparticles: Interaction of silver nanoparticles with cystine and albumins towards fluorescence sensing.
    Sadeq Al-Namil D; Patra D
    Colloids Surf B Biointerfaces; 2019 Jan; 173():647-653. PubMed ID: 30368212
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemiluminescence of luminol catalyzed by silver nanoparticles.
    Chen H; Gao F; He R; Cui D
    J Colloid Interface Sci; 2007 Nov; 315(1):158-63. PubMed ID: 17681516
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Colorimetric determination of o-phenylenediamine in water samples based on the formation of silver nanoparticles as a colorimetric probe.
    Li N; Gu Y; Gao M; Wang Z; Xiao D; Li Y; Lin R; He H
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Apr; 140():328-33. PubMed ID: 25615678
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new formaldehyde sensor from silver nanoclusters modified Tollens' reagent.
    Chaiendoo K; Sooksin S; Kulchat S; Promarak V; Tuntulani T; Ngeontae W
    Food Chem; 2018 Jul; 255():41-48. PubMed ID: 29571494
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Colorimetric detection of mercury(II) ion using unmodified silver nanoparticles and mercury-specific oligonucleotides.
    Wang Y; Yang F; Yang X
    ACS Appl Mater Interfaces; 2010 Feb; 2(2):339-42. PubMed ID: 20356177
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Visual detection of melamine in infant formula at 0.1 ppm level based on silver nanoparticles.
    Han C; Li H
    Analyst; 2010 Mar; 135(3):583-8. PubMed ID: 20174714
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Colorimetric determination of melamine in milk using unmodified silver nanoparticles.
    Kumar N; Kumar H; Mann B; Seth R
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Mar; 156():89-97. PubMed ID: 26654965
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation of silver hexacyanoferrate nanoparticles and its application for the simultaneous determination of ascorbic acid, dopamine and uric acid.
    Noroozifar M; Khorasani-Motlagh M; Taheri A
    Talanta; 2010 Mar; 80(5):1657-64. PubMed ID: 20152393
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SPR studies of the adsorption of silver/bovine serum albumin nanoparticles (Ag/BSA NPs) onto the model biological substrates.
    Bhan C; Brower TL; Raghavan D
    J Colloid Interface Sci; 2013 Jul; 402():40-9. PubMed ID: 23664392
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PVA and BSA stabilized silver nanoparticles based surface-enhanced plasmon resonance probes for protein detection.
    Ananth AN; Daniel SC; Sironmani TA; Umapathi S
    Colloids Surf B Biointerfaces; 2011 Jul; 85(2):138-44. PubMed ID: 21398099
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly sensitive colorimetric detection of glucose in a serum based on DNA-embeded Au@Ag core-shell nanoparticles.
    Kang F; Hou X; Xu K
    Nanotechnology; 2015 Oct; 26(40):405707. PubMed ID: 26376788
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An ascorbic acid sensor based on protein-modified Au nanoclusters.
    Wang X; Wu P; Hou X; Lv Y
    Analyst; 2013 Jan; 138(1):229-33. PubMed ID: 23108453
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Label-free silver nanoparticles for the naked eye detection of entecavir.
    Gao M; Lin R; Li L; Jiang L; Ye B; He H; Qiu L
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 May; 126():178-83. PubMed ID: 24607467
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Blue-to-red colorimetric sensing strategy for Hg²⁺ and Ag⁺ via redox-regulated surface chemistry of gold nanoparticles.
    Lou T; Chen Z; Wang Y; Chen L
    ACS Appl Mater Interfaces; 2011 May; 3(5):1568-73. PubMed ID: 21469714
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Robust one pot synthesis of colloidal silver nanoparticles by simple redox method and absorbance recovered sensing.
    Salman M; Iqbal M; El Ashry el SH; Kanwal S
    Biosens Bioelectron; 2012; 36(1):236-41. PubMed ID: 22578269
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polyethylenimine-stabilized silver nanoclusters act as an oxidoreductase mimic for colorimetric determination of chromium(VI).
    Xue Q; Li X; Peng Y; Liu P; Peng H; Niu X
    Mikrochim Acta; 2020 Apr; 187(5):263. PubMed ID: 32270303
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A carbon dot-based ratiometric fluorometric and colorimetric method for determination of ascorbic acid and of the activity of ascorbic acid oxidase.
    Wang Y; Yang Y; Liu W; Ding F; Zou P; Wang X; Zhao Q; Rao H
    Mikrochim Acta; 2019 Mar; 186(4):246. PubMed ID: 30879229
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of AgNCs@PEI and their integrated hydrogel for colorimetric and fluorometric detection of ascorbic acid.
    Raj R; Mradula ; Samanta P; Singh R; Sachdev A; Mishra S
    Anal Biochem; 2024 Apr; 687():115433. PubMed ID: 38128809
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.