These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 23396059)
21. Switching between the alternative structures and functions of a 2-Cys peroxiredoxin, by site-directed mutagenesis. Angelucci F; Saccoccia F; Ardini M; Boumis G; Brunori M; Di Leandro L; Ippoliti R; Miele AE; Natoli G; Scotti S; Bellelli A J Mol Biol; 2013 Nov; 425(22):4556-68. PubMed ID: 24021815 [TBL] [Abstract][Full Text] [Related]
22. Oxidation of a eukaryotic 2-Cys peroxiredoxin is a molecular switch controlling the transcriptional response to increasing levels of hydrogen peroxide. Bozonet SM; Findlay VJ; Day AM; Cameron J; Veal EA; Morgan BA J Biol Chem; 2005 Jun; 280(24):23319-27. PubMed ID: 15824112 [TBL] [Abstract][Full Text] [Related]
23. Disulfide biochemistry in 2-cys peroxiredoxin: requirement of Glu50 and Arg146 for the reduction of yeast Tsa1 by thioredoxin. Tairum CA; de Oliveira MA; Horta BB; Zara FJ; Netto LE J Mol Biol; 2012 Nov; 424(1-2):28-41. PubMed ID: 22985967 [TBL] [Abstract][Full Text] [Related]
24. Structural basis for the retroreduction of inactivated peroxiredoxins by human sulfiredoxin. Jönsson TJ; Murray MS; Johnson LC; Poole LB; Lowther WT Biochemistry; 2005 Jun; 44(24):8634-42. PubMed ID: 15952770 [TBL] [Abstract][Full Text] [Related]
25. Deglutathionylation of 2-Cys peroxiredoxin is specifically catalyzed by sulfiredoxin. Park JW; Mieyal JJ; Rhee SG; Chock PB J Biol Chem; 2009 Aug; 284(35):23364-74. PubMed ID: 19561357 [TBL] [Abstract][Full Text] [Related]
26. Peroxiredoxins and sulfiredoxin at the crossroads of the NO and H2O2 signaling pathways. Abbas K; Riquier S; Drapier JC Methods Enzymol; 2013; 527():113-28. PubMed ID: 23830628 [TBL] [Abstract][Full Text] [Related]
27. Structure-based analysis and rational design of human peroxiredoxin-1's C-terminus-derived peptides to target sulfiredoxin-1 in pancreatic cancer. Wu X; Qiu R; Yi W; Chen J; Zhang Z; Zhang J; Zhu Z Biophys Chem; 2022 Sep; 288():106857. PubMed ID: 35901662 [TBL] [Abstract][Full Text] [Related]
28. Molecular mechanism of the reduction of cysteine sulfinic acid of peroxiredoxin to cysteine by mammalian sulfiredoxin. Jeong W; Park SJ; Chang TS; Lee DY; Rhee SG J Biol Chem; 2006 May; 281(20):14400-7. PubMed ID: 16565085 [TBL] [Abstract][Full Text] [Related]
29. Characterization of plant sulfiredoxin and role of sulphinic form of 2-Cys peroxiredoxin. Iglesias-Baena I; Barranco-Medina S; Lázaro-Payo A; López-Jaramillo FJ; Sevilla F; Lázaro JJ J Exp Bot; 2010 Mar; 61(5):1509-21. PubMed ID: 20176891 [TBL] [Abstract][Full Text] [Related]
30. Peroxiredoxin 1 and its role in cell signaling. Neumann CA; Cao J; Manevich Y Cell Cycle; 2009 Dec; 8(24):4072-8. PubMed ID: 19923889 [TBL] [Abstract][Full Text] [Related]
31. Site-specific mutagenesis of yeast 2-Cys peroxiredoxin improves heat or oxidative stress tolerance by enhancing its chaperone or peroxidase function. Hong SH; Lee SS; Chung JM; Jung HS; Singh S; Mondal S; Jang HH; Cho JY; Bae HJ; Chung BY Protoplasma; 2017 Jan; 254(1):327-334. PubMed ID: 26843371 [TBL] [Abstract][Full Text] [Related]
32. The sulfiredoxin-peroxiredoxin (Srx-Prx) axis in cell signal transduction and cancer development. Mishra M; Jiang H; Wu L; Chawsheen HA; Wei Q Cancer Lett; 2015 Oct; 366(2):150-9. PubMed ID: 26170166 [TBL] [Abstract][Full Text] [Related]
33. Evidence for the formation of a covalent thiosulfinate intermediate with peroxiredoxin in the catalytic mechanism of sulfiredoxin. Roussel X; Béchade G; Kriznik A; Van Dorsselaer A; Sanglier-Cianferani S; Branlant G; Rahuel-Clermont S J Biol Chem; 2008 Aug; 283(33):22371-82. PubMed ID: 18552404 [TBL] [Abstract][Full Text] [Related]
34. Physiological relevance of plant 2-Cys peroxiredoxin overoxidation level and oligomerization status. Cerveau D; Ouahrani D; Marok MA; Blanchard L; Rey P Plant Cell Environ; 2016 Jan; 39(1):103-19. PubMed ID: 26138759 [TBL] [Abstract][Full Text] [Related]
35. Mapping the phenotypic repertoire of the cytoplasmic 2-Cys peroxiredoxin - Thioredoxin system. 1. Understanding commonalities and differences among cell types. Selvaggio G; Coelho PMBM; Salvador A Redox Biol; 2018 May; 15():297-315. PubMed ID: 29304480 [TBL] [Abstract][Full Text] [Related]
36. New insights on the differential interaction of sulfiredoxin with members of the peroxiredoxin family revealed by protein-protein docking and experimental studies. Mishra M; Jiang H; Wei Q Eur J Pharmacol; 2023 Sep; 954():175873. PubMed ID: 37353187 [TBL] [Abstract][Full Text] [Related]
37. The dual-targeted plant sulfiredoxin retroreduces the sulfinic form of atypical mitochondrial peroxiredoxin. Iglesias-Baena I; Barranco-Medina S; Sevilla F; Lázaro JJ Plant Physiol; 2011 Feb; 155(2):944-55. PubMed ID: 21139087 [TBL] [Abstract][Full Text] [Related]
38. Reduction of cysteine sulfinic acid in peroxiredoxin by sulfiredoxin proceeds directly through a sulfinic phosphoryl ester intermediate. Jönsson TJ; Murray MS; Johnson LC; Lowther WT J Biol Chem; 2008 Aug; 283(35):23846-51. PubMed ID: 18579529 [TBL] [Abstract][Full Text] [Related]
39. Mitochondria of Saccharomyces cerevisiae contain one-conserved cysteine type peroxiredoxin with thioredoxin peroxidase activity. Pedrajas JR; Miranda-Vizuete A; Javanmardy N; Gustafsson JA; Spyrou G J Biol Chem; 2000 May; 275(21):16296-301. PubMed ID: 10821871 [TBL] [Abstract][Full Text] [Related]
40. Characterization of the yeast peroxiredoxin Ahp1 in its reduced active and overoxidized inactive forms using NMR. Trivelli X; Krimm I; Ebel C; Verdoucq L; Prouzet-Mauléon V; Chartier Y; Tsan P; Lauquin G; Meyer Y; Lancelin JM Biochemistry; 2003 Dec; 42(48):14139-49. PubMed ID: 14640681 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]