BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 2339612)

  • 1. Biomechanical properties of canine vertebral and internal carotid arteries.
    Bérczi V; Tóth P; Kovách AG; Monos E
    Acta Physiol Hung; 1990; 75(2):133-45. PubMed ID: 2339612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of smooth muscle activation on the mechanical properties of pig carotid arteries.
    Hudetz AG; Márk G; Kovách AG; Monos E
    Acta Physiol Acad Sci Hung; 1980; 56(3):263-73. PubMed ID: 7257844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of acute ischaemia on active and passive large deformation mechanics of canine carotid arteries.
    Monos E; Kovách AG
    Acta Physiol Acad Sci Hung; 1979; 54(1):23-31. PubMed ID: 546047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of anisotropic elastic properties of the arteries by exponential and polynomial strain energy functions.
    Hudetz AG; Monos E
    Acta Physiol Acad Sci Hung; 1981; 57(2):111-22. PubMed ID: 7315373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of biomechanical and histological properties in dog carotid arteries injured by neointima or intimal thickening.
    Goto H; Mizuno R; Ono N; Sakaguchi M; Ohhashi T
    Jpn J Physiol; 2005 Dec; 55(6):355-64. PubMed ID: 16368015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of ifenprodil tartrate on vertebral, basilar and internal carotid arteries.
    Honda H; Watanabe Y; Irino O; Shimura H; Shibuya T
    Int J Clin Pharmacol Ther Toxicol; 1988 Jan; 26(1):4-7. PubMed ID: 3403091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Influence of the vertebral nerve on several indices of cerebral blood flow].
    Khamitov KhS; Bogdanov EI; Ismagilov MF
    Fiziol Zh SSSR Im I M Sechenova; 1979 Feb; 65(2):257-62. PubMed ID: 37126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The mode of low responsiveness of isolated canine internal carotid artery to exogenous norepinephrine].
    Kawai Y; Ohhasi T
    Kokyu To Junkan; 1986 Oct; 34(10):1093-8. PubMed ID: 3797840
    [No Abstract]   [Full Text] [Related]  

  • 9. Vascular smooth muscle mechanics in isolated perfused segments of carotid arteries.
    Jerius H; Bagwell CA; Beall A; Karolyi D; Brophy C
    Surgery; 2000 Feb; 127(2):148-54. PubMed ID: 10686979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decreased vascular contraction and elastic stiffening after intramural lymphostasis.
    Bérczi V; Solti F; Schneider F; Monos E
    Am J Physiol; 1988 Dec; 255(6 Pt 2):H1289-94. PubMed ID: 3202192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Damping of oscillations in arterial pressure in the internal carotid arteries].
    Mchedlishvili GI; Ormotsidze LG; Labadze TS
    Fiziol Zh SSSR Im I M Sechenova; 1977 Sep; 63(9):1302-11. PubMed ID: 913682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneously hypertensive rat resistance artery structure related to myogenic and mechanical properties.
    Bund SJ
    Clin Sci (Lond); 2001 Oct; 101(4):385-93. PubMed ID: 11566076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-invasive and quantitative measurement of volume flow-rate at internal and external carotid and vertebral arteries.
    Furuhata H; Suzuki N; Yoshimura S; Kodaira K; Aoyagi T; Obara K; Fujishiro K; Shimizu H; Mikawa H
    Ultrasound Med Biol; 1983; Suppl 2():239-42. PubMed ID: 6242520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Modeling of elastic deformation and vascular resistance of arterial and venous vasa vasorum].
    Maurice G; Wang X; Lehalle B; Stoltz JF
    J Mal Vasc; 1998 Oct; 23(4):282-8. PubMed ID: 9827409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple model describing the elastic properties of human umbilical arterial smooth muscle.
    Nádasy GL; Mohácsi E; Monos E; Lear JC; Kovách AG
    Acta Physiol Hung; 1987; 70(1):75-85. PubMed ID: 3425335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of smooth muscle activation on incremental elastic properties of major arteries.
    Monos E; Hudetz AG; Cox RH
    Acta Physiol Acad Sci Hung; 1979; 53(1):31-9. PubMed ID: 495123
    [No Abstract]   [Full Text] [Related]  

  • 17. A possible mechanism on the potentiating vascular effect of coadministration of ifenprodil tartrate and calcium hopantenate: a study in the internal carotid artery.
    Shibuya T; Honda H; Watanabe Y; Shimura H; Matsuda H; Tsuji H; Izumisawa M; Iwata T; Irino O
    Int J Clin Pharmacol Ther Toxicol; 1988 Sep; 26(9):448-52. PubMed ID: 3198300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Regional differences in viscosity, elasticity and wall buffering function in systemic arteries: pulse wave analysis of the arterial pressure-diameter relationship].
    Bia D; Aguirre I; Zócalo Y; Devera L; Cabrera Fischer E; Armentano R
    Rev Esp Cardiol; 2005 Feb; 58(2):167-74. PubMed ID: 15743563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Passive geometric and elastic properties of human cadaver common carotid artery segments after intraluminal enzyme digestion with the aid of a four-way double balloon catheter.
    Nadasy GL; Pusztai P; Kerényi T; Merkel V; Tolgyessy L; Jellinek H; Kovách AG; Monos E
    Cor Vasa; 1991; 33(1):58-67. PubMed ID: 1914468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Mechanical adaptation of muscular arteries to acute increase of blood pressure in man. Contribution of the measurement of arterial wall thickness].
    Joannides R; Moore N; Richard V; Godin M; Thuillez C
    Arch Mal Coeur Vaiss; 1993 Aug; 86(8):1219-23. PubMed ID: 8129530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.