These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 23396327)
41. The role of electron shuttle enhances Fe(III)-mediated reduction of Cr(VI) by Shewanella oneidensis MR-1. Liu X; Chu G; Du Y; Li J; Si Y World J Microbiol Biotechnol; 2019 Mar; 35(4):64. PubMed ID: 30923928 [TBL] [Abstract][Full Text] [Related]
42. A Membrane-Bound Cytochrome Enables Holmes DE; Ueki T; Tang HY; Zhou J; Smith JA; Chaput G; Lovley DR mBio; 2019 Aug; 10(4):. PubMed ID: 31431545 [TBL] [Abstract][Full Text] [Related]
43. Lactate oxidation coupled to iron or electrode reduction by Geobacter sulfurreducens PCA. Call DF; Logan BE Appl Environ Microbiol; 2011 Dec; 77(24):8791-4. PubMed ID: 22003020 [TBL] [Abstract][Full Text] [Related]
44. Orenia metallireducens sp. nov. Strain Z6, a Novel Metal-Reducing Member of the Phylum Firmicutes from the Deep Subsurface. Dong Y; Sanford RA; Boyanov MI; Kemner KM; Flynn TM; O'Loughlin EJ; Chang YJ; Locke RA; Weber JR; Egan SM; Mackie RI; Cann I; Fouke BW Appl Environ Microbiol; 2016 Nov; 82(21):6440-6453. PubMed ID: 27565620 [TBL] [Abstract][Full Text] [Related]
45. Enhancing anaerobic degradation of phenol to methane via solubilizing Fe(III) oxides for dissimilatory iron reduction with organic chelates. Li Y; Ren C; Zhao Z; Yu Q; Zhao Z; Liu L; Zhang Y; Feng Y Bioresour Technol; 2019 Nov; 291():121858. PubMed ID: 31377515 [TBL] [Abstract][Full Text] [Related]
46. Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for Biofilms. Lies DP; Hernandez ME; Kappler A; Mielke RE; Gralnick JA; Newman DK Appl Environ Microbiol; 2005 Aug; 71(8):4414-26. PubMed ID: 16085832 [TBL] [Abstract][Full Text] [Related]
47. Fate of Fe and Cd upon microbial reduction of Cd-loaded polyferric flocs by Shewanella oneidensis MR-1. Li C; Yi X; Dang Z; Yu H; Zeng T; Wei C; Feng C Chemosphere; 2016 Feb; 144():2065-72. PubMed ID: 26583288 [TBL] [Abstract][Full Text] [Related]
48. Metabolic characterization of lactic acid bacterium Lactococcus garvieae sk11, capable of reducing ferric iron, nitrate, and fumarate. Yun SH; Hwang TS; Park DH J Microbiol Biotechnol; 2007 Feb; 17(2):218-25. PubMed ID: 18051752 [TBL] [Abstract][Full Text] [Related]
49. Geobacter sulfurreducens metabolism at different donor/acceptor ratios. Frühauf-Wyllie HM; Holtmann D Microbiologyopen; 2022 Oct; 11(5):e1322. PubMed ID: 36314758 [TBL] [Abstract][Full Text] [Related]
50. Syntrophic growth with direct interspecies electron transfer as the primary mechanism for energy exchange. Shrestha PM; Rotaru AE; Aklujkar M; Liu F; Shrestha M; Summers ZM; Malvankar N; Flores DC; Lovley DR Environ Microbiol Rep; 2013 Dec; 5(6):904-10. PubMed ID: 24249299 [TBL] [Abstract][Full Text] [Related]
51. Tracking Electron Uptake from a Cathode into Rowe AR; Rajeev P; Jain A; Pirbadian S; Okamoto A; Gralnick JA; El-Naggar MY; Nealson KH mBio; 2018 Feb; 9(1):. PubMed ID: 29487241 [TBL] [Abstract][Full Text] [Related]
52. Biochar-Facilitated Microbial Reduction of Hematite. Xu S; Adhikari D; Huang R; Zhang H; Tang Y; Roden E; Yang Y Environ Sci Technol; 2016 Mar; 50(5):2389-95. PubMed ID: 26836650 [TBL] [Abstract][Full Text] [Related]
53. Oxidation of acetate through reactions of the citric acid cycle by Geobacter sulfurreducens in pure culture and in syntrophic coculture. Galushko AS; Schink B Arch Microbiol; 2000 Nov; 174(5):314-21. PubMed ID: 11131021 [TBL] [Abstract][Full Text] [Related]
54. Characterization of axial and proximal histidine mutations of the decaheme cytochrome MtrA from Shewanella sp. strain ANA-3 and implications for the electron transport system. Reyes C; Qian F; Zhang A; Bondarev S; Welch A; Thelen MP; Saltikov CW J Bacteriol; 2012 Nov; 194(21):5840-7. PubMed ID: 22923588 [TBL] [Abstract][Full Text] [Related]
55. Respiration-linked proton translocation coupled to anaerobic reduction of manganese(IV) and iron(III) in Shewanella putrefaciens MR-1. Myers CR; Nealson KH J Bacteriol; 1990 Nov; 172(11):6232-8. PubMed ID: 2172208 [TBL] [Abstract][Full Text] [Related]
56. Influence of electron donor/acceptor concentrations on hydrous ferric oxide (HFO) bioreduction. Fredrickson JK; Kota S; Kukkadapu RK; Liu C; Zachara JM Biodegradation; 2003 Apr; 14(2):91-103. PubMed ID: 12877465 [TBL] [Abstract][Full Text] [Related]
57. [Effects of iron on azoreduction by Shewanella decolorationis S12]. Chen XJ; Xu MY; Sun GP Huan Jing Ke Xue; 2010 Jan; 31(1):230-6. PubMed ID: 20329544 [TBL] [Abstract][Full Text] [Related]
58. Acetate threshold concentrations suggest varying energy requirements during anaerobic respiration by Anaeromyxobacter dehalogenans. He Q; Sanford RA Appl Environ Microbiol; 2004 Nov; 70(11):6940-3. PubMed ID: 15528569 [TBL] [Abstract][Full Text] [Related]
59. Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide. Li FB; Li XM; Zhou SG; Zhuang L; Cao F; Huang DY; Xu W; Liu TX; Feng CH Environ Pollut; 2010 May; 158(5):1733-40. PubMed ID: 20031285 [TBL] [Abstract][Full Text] [Related]
60. Electron transfer mechanism in Shewanella loihica PV-4 biofilms formed at graphite electrode. Jain A; Zhang X; Pastorella G; Connolly JO; Barry N; Woolley R; Krishnamurthy S; Marsili E Bioelectrochemistry; 2012 Oct; 87():28-32. PubMed ID: 22281091 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]