These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 23396415)

  • 1. An advanced sodium-ion rechargeable battery based on a tin-carbon anode and a layered oxide framework cathode.
    Oh SM; Myung ST; Jang MW; Scrosati B; Hassoun J; Sun YK
    Phys Chem Chem Phys; 2013 Mar; 15(11):3827-33. PubMed ID: 23396415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on the reversible electrode reaction of Na(1-x)Ni(0.5)Mn(0.5)O2 for a rechargeable sodium-ion battery.
    Komaba S; Yabuuchi N; Nakayama T; Ogata A; Ishikawa T; Nakai I
    Inorg Chem; 2012 Jun; 51(11):6211-20. PubMed ID: 22626447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium-ion battery based on an electrochemically converted NaFePO4 cathode and nanostructured tin-carbon anode.
    Hasa I; Hassoun J; Sun YK; Scrosati B
    Chemphyschem; 2014 Jul; 15(10):2152-5. PubMed ID: 24737749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energetic aqueous rechargeable sodium-ion battery based on Na2 CuFe(CN)6 -NaTi2 (PO4 )3 intercalation chemistry.
    Wu XY; Sun MY; Shen YF; Qian JF; Cao YL; Ai XP; Yang HX
    ChemSusChem; 2014 Feb; 7(2):407-11. PubMed ID: 24464957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical and structural study of layered P2-type Na(2/3)Ni(1/3)Mn(2/3)O2 as cathode material for sodium-ion battery.
    Wen Y; Wang B; Zeng G; Nogita K; Ye D; Wang L
    Chem Asian J; 2015 Mar; 10(3):661-6. PubMed ID: 25641817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery.
    Song J; Wang L; Lu Y; Liu J; Guo B; Xiao P; Lee JJ; Yang XQ; Henkelman G; Goodenough JB
    J Am Chem Soc; 2015 Feb; 137(7):2658-64. PubMed ID: 25679040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of strategies for modern rechargeable batteries.
    Goodenough JB
    Acc Chem Res; 2013 May; 46(5):1053-61. PubMed ID: 22746097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study of layered transition metal oxide cathodes for application in sodium-ion battery.
    Hasa I; Buchholz D; Passerini S; Hassoun J
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5206-12. PubMed ID: 25692933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rechargeable Sodium-Ion Battery: High-Capacity Ammonium Vanadate Cathode with Enhanced Stability at High Rate.
    Sarkar A; Sarkar S; Sarkar T; Kumar P; Bharadwaj MD; Mitra S
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17044-53. PubMed ID: 26189927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rechargeable Ni-Li battery integrated aqueous/nonaqueous system.
    Li H; Wang Y; Na H; Liu H; Zhou H
    J Am Chem Soc; 2009 Oct; 131(42):15098-9. PubMed ID: 19803514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An advanced lithium ion battery based on high performance electrode materials.
    Hassoun J; Lee KS; Sun YK; Scrosati B
    J Am Chem Soc; 2011 Mar; 133(9):3139-43. PubMed ID: 21291261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rechargeable battery using a novel iron oxide nanorods anode and a nickel hydroxide cathode in an aqueous electrolyte.
    Liu Z; Tay SW; Li X
    Chem Commun (Camb); 2011 Dec; 47(46):12473-5. PubMed ID: 22022706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tin-coated viral nanoforests as sodium-ion battery anodes.
    Liu Y; Xu Y; Zhu Y; Culver JN; Lundgren CA; Xu K; Wang C
    ACS Nano; 2013 Apr; 7(4):3627-34. PubMed ID: 23484633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis-microstructure-performance relationship of layered transition metal oxides as cathode for rechargeable sodium batteries prepared by high-temperature calcination.
    Xie M; Luo R; Lu J; Chen R; Wu F; Wang X; Zhan C; Wu H; Albishri HM; Al-Bogami AS; El-Hady DA; Amine K
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17176-83. PubMed ID: 25192293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced Na[Ni0.25Fe0.5Mn0.25]O2/C-Fe3O4 sodium-ion batteries using EMS electrolyte for energy storage.
    Oh SM; Myung ST; Yoon CS; Lu J; Hassoun J; Scrosati B; Amine K; Sun YK
    Nano Lett; 2014 Mar; 14(3):1620-6. PubMed ID: 24524729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries.
    Hwang JY; Oh SM; Myung ST; Chung KY; Belharouak I; Sun YK
    Nat Commun; 2015 Apr; 6():6865. PubMed ID: 25882619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The rechargeable aluminum-ion battery.
    Jayaprakash N; Das SK; Archer LA
    Chem Commun (Camb); 2011 Dec; 47(47):12610-2. PubMed ID: 22051794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of fluoroethylene carbonate effects on tin-based lithium-ion battery electrodes.
    Yang Z; Gewirth AA; Trahey L
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6557-66. PubMed ID: 25741901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A high energy-density tin anode for rechargeable magnesium-ion batteries.
    Singh N; Arthur TS; Ling C; Matsui M; Mizuno F
    Chem Commun (Camb); 2013 Jan; 49(2):149-51. PubMed ID: 23168386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.