These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 23396549)
1. Is the special pair structure a good strategy for the kinetics during the last step of the energy transfer with the nearest antenna? A chemical model approach. Camus JM; Langlois A; Aly SM; Guilard R; Harvey PD Chem Commun (Camb); 2013 Mar; 49(22):2228-30. PubMed ID: 23396549 [TBL] [Abstract][Full Text] [Related]
2. Chemical models for aspects of the photosynthetic reaction centre: synthesis and photophysical properties of tris- and tetrakis-porphyrins that resemble the arrangement of chromophores in the natural system. Crossley MJ; Sintic PJ; Hutchison JA; Ghiggino KP Org Biomol Chem; 2005 Mar; 3(5):852-65. PubMed ID: 15731872 [TBL] [Abstract][Full Text] [Related]
3. Dendron to central core S1-S1 and S2-S(n) (n>1) energy transfers in artificial special pairs containing dendrimers with limited numbers of conformations. Harvey PD; Brégier F; Aly SM; Szmytkowski J; Paige MF; Steer RP Chemistry; 2013 Mar; 19(13):4352-68. PubMed ID: 23371815 [TBL] [Abstract][Full Text] [Related]
5. Design and photophysical properties of zinc(II) porphyrin-containing dendrons linked to a central artificial special pair. Brégier F; Aly SM; Gros CP; Barbe JM; Rousselin Y; Harvey PD Chemistry; 2011 Dec; 17(51):14643-62. PubMed ID: 22083850 [TBL] [Abstract][Full Text] [Related]
6. A versatile bis-porphyrin tweezer host for the assembly of noncovalent photoactive architectures: a photophysical characterization of the tweezers and their association with porphyrins and other guests. Flamigni L; Talarico AM; Ventura B; Rein R; Solladié N Chemistry; 2006 Jan; 12(3):701-12. PubMed ID: 16224770 [TBL] [Abstract][Full Text] [Related]
7. [Studies on tailed metalloporphyrin coordination compounds. IX. Synthesis of tailed porphyrin with covalently linked phenylalanine and its fluorescence property]. Liu H; Huang J; Lei H; Zeng C; Ji L; Chen R Guang Pu Xue Yu Guang Pu Fen Xi; 1999 Apr; 19(2):151-3. PubMed ID: 15818990 [TBL] [Abstract][Full Text] [Related]
8. Energy transfer followed by electron transfer in a supramolecular triad composed of boron dipyrrin, zinc porphyrin, and fullerene: a model for the photosynthetic antenna-reaction center complex. D'Souza F; Smith PM; Zandler ME; McCarty AL; Itou M; Araki Y; Ito O J Am Chem Soc; 2004 Jun; 126(25):7898-907. PubMed ID: 15212538 [TBL] [Abstract][Full Text] [Related]
9. Modulation of the singlet-singlet through-space energy transfer rates in cofacial bisporphyrin and porphyrin-corrole dyads. Gros CP; Brisach F; Meristoudi A; Espinosa E; Guilard R; Harvey PD Inorg Chem; 2007 Jan; 46(1):125-35. PubMed ID: 17198420 [TBL] [Abstract][Full Text] [Related]
10. Triplet-triplet energy transfer controlled by the donor-acceptor distance in rigidly held palladium-containing cofacial bisporphyrins. Faure S; Stern C; Espinosa E; Douville J; Guilard R; Harvey PD Chemistry; 2005 May; 11(11):3469-81. PubMed ID: 15812878 [TBL] [Abstract][Full Text] [Related]
11. Ultrafast energy transfer in a Pd(II)-bridged bisporphyrin dyad. Abdelhameed M; Langlois A; Karsenti PL; Richeter S; Ruppert R; Harvey PD Chem Commun (Camb); 2014 Dec; 50(93):14609-12. PubMed ID: 25312484 [TBL] [Abstract][Full Text] [Related]
12. Spectral, electrochemical, and photophysical studies of a magnesium porphyrin-fullerene dyad. El-Khouly ME; Araki Y; Ito O; Gadde S; McCarty AL; Karr PA; Zandler ME; D'Souza F Phys Chem Chem Phys; 2005 Sep; 7(17):3163-71. PubMed ID: 16240027 [TBL] [Abstract][Full Text] [Related]
13. Photosynthetic antenna-reaction center mimicry: sequential energy- and electron transfer in a self-assembled supramolecular triad composed of boron dipyrrin, zinc porphyrin and fullerene. Maligaspe E; Tkachenko NV; Subbaiyan NK; Chitta R; Zandler ME; Lemmetyinen H; D'Souza F J Phys Chem A; 2009 Jul; 113(30):8478-89. PubMed ID: 19580310 [TBL] [Abstract][Full Text] [Related]
14. Regiospecifically alpha-13C-labeled porphyrins for studies of ground-state hole transfer in multiporphyrin arrays. Muresan AZ; Thamyongkit P; Diers JR; Holten D; Lindsey JS; Bocian DF J Org Chem; 2008 Sep; 73(18):6947-59. PubMed ID: 18722412 [TBL] [Abstract][Full Text] [Related]
15. A functionalized noncovalent macrocyclic multiporphyrin assembly from a dizinc(II) bis-porphyrin receptor and a free-base dipyridylporphyrin. Iengo E; Zangrando E; Alessio E; Chambron JC; Heitz V; Flamigni L; Sauvage JP Chemistry; 2003 Dec; 9(23):5879-87. PubMed ID: 14673860 [TBL] [Abstract][Full Text] [Related]
16. Charge transfer excitations in cofacial fullerene-porphyrin complexes. Zope RR; Olguin M; Baruah T J Chem Phys; 2012 Aug; 137(8):084317. PubMed ID: 22938243 [TBL] [Abstract][Full Text] [Related]
17. Unexpected drastic decrease in the excited-state electronic communication between porphyrin chromophores covalently linked by a palladium(II) bridge. Abdelhameed M; Karsenti PL; Langlois A; Lefebvre JF; Richeter S; Ruppert R; Harvey PD Chemistry; 2014 Sep; 20(40):12988-3001. PubMed ID: 25123591 [TBL] [Abstract][Full Text] [Related]
19. Photoinduced energy and electron transfer in phenylethynyl-bridged zinc porphyrin-oligothienylenevinylene-C60 ensembles. Urbani M; Ohkubo K; Islam DM; Fukuzumi S; Langa F Chemistry; 2012 Jun; 18(24):7473-85. PubMed ID: 22556056 [TBL] [Abstract][Full Text] [Related]
20. Photoinduced electron transfer in Zn(II)porphyrin-bridge-Pt(II)acetylide complexes: variation in rate with anchoring group and position of the bridge. Göransson E; Boixel J; Monnereau C; Blart E; Pellegrin Y; Becker HC; Hammarström L; Odobel F Inorg Chem; 2010 Nov; 49(21):9823-32. PubMed ID: 20919727 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]