BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 23397070)

  • 21. Dopamine and Caffeine Encapsulation within Boron Nitride (14,0) Nanotubes: Classical Molecular Dynamics and First Principles Calculations.
    García-Toral D; González-Melchor M; Rivas-Silva JF; Meneses-Juárez E; Cano-Ordaz J; H Cocoletzi G
    J Phys Chem B; 2018 Jun; 122(22):5885-5896. PubMed ID: 29761705
    [TBL] [Abstract][Full Text] [Related]  

  • 22. α-Helical Antimicrobial Peptide Encapsulation and Release from Boron Nitride Nanotubes: A Computational Study.
    Zarghami Dehaghani M; Yousefi F; Bagheri B; Seidi F; Hamed Mashhadzadeh A; Rabiee N; Zarrintaj P; Mostafavi E; Saeb MR; Kim YC
    Int J Nanomedicine; 2021; 16():4277-4288. PubMed ID: 34194228
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Long-term stability of dental adhesive incorporated by boron nitride nanotubes.
    Degrazia FW; Leitune VCB; Visioli F; Samuel SMW; Collares FM
    Dent Mater; 2018 Mar; 34(3):427-433. PubMed ID: 29217312
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interaction of DNA-Complexed Boron Nitride Nanotubes and Cosolvents Impacts Dispersion and Length Characteristics.
    Kode VR; Hinkle KR; Ao G
    Langmuir; 2021 Sep; 37(37):10934-10944. PubMed ID: 34496213
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantum DFT methods to explore the interaction of 1-Adamantylamine with pristine, and P, As, Al, and Ga doped BN nanotubes.
    Nemati-Kande E; Pourasadi A; Aghababaei F; Baranipour S; Mehdizadeh A; Sardroodi JJ
    Sci Rep; 2022 Nov; 12(1):19972. PubMed ID: 36402905
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrahigh torsional stiffness and strength of boron nitride nanotubes.
    Garel J; Leven I; Zhi C; Nagapriya KS; Popovitz-Biro R; Golberg D; Bando Y; Hod O; Joselevich E
    Nano Lett; 2012 Dec; 12(12):6347-52. PubMed ID: 23130892
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Irreversible pressure-induced transformation of boron nitride nanotubes.
    Saha S; Gadagkar V; Maiti PK; Muthu DV; Golberg D; Tang C; Zhi C; Bando Y; Sood AK
    J Nanosci Nanotechnol; 2007 Jun; 7(6):1810-4. PubMed ID: 17654945
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Immobilization of proteins on boron nitride nanotubes.
    Zhi C; Bando Y; Tang C; Golberg D
    J Am Chem Soc; 2005 Dec; 127(49):17144-5. PubMed ID: 16332036
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Host-Guest Chemistry in Boron Nitride Nanotubes: Interactions with Polyoxometalates and Mechanism of Encapsulation.
    Jordan JW; Chernov AI; Rance GA; Stephen Davies E; Lanterna AE; Alves Fernandes J; Grüneis A; Ramasse Q; Newton GN; Khlobystov AN
    J Am Chem Soc; 2023 Jan; 145(2):1206-1215. PubMed ID: 36586130
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Boron nitride nanotube based nanosensor for acetone adsorption: a DFT simulation.
    Ganji MD; Rezvani M
    J Mol Model; 2013 Mar; 19(3):1259-65. PubMed ID: 23179768
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Boron nitride nanotubes: nanoparticles functionalization and junction fabrication.
    Zhi C; Bando Y; Shen G; Tang C; Golberg D
    J Nanosci Nanotechnol; 2007 Feb; 7(2):530-4. PubMed ID: 17450790
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carbon and boron nanotubes as a template material for adsorption of 6-Thioguanine chemotherapeutic: a molecular dynamics and density functional approach.
    Hasanzade Z; Raissi H
    J Biomol Struct Dyn; 2020 Feb; 38(3):697-707. PubMed ID: 30900530
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Measurement of wetting properties of individual boron nitride nanotubes with the wilhelmy method using a nanotube-based force sensor.
    Yum K; Yu MF
    Nano Lett; 2006 Feb; 6(2):329-33. PubMed ID: 16464059
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of point defects on the electronic properties of boron nitride nanosheets.
    Anota EC; Gutiérrez RE; Morales AE; Cocoletzi GH
    J Mol Model; 2012 May; 18(5):2175-84. PubMed ID: 21947446
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of nanotubes as the smart carriers for targeted delivery of mercaptopurine anticancer drug.
    Zaboli M; Raissi H; Zaboli M
    J Biomol Struct Dyn; 2022 Jul; 40(10):4579-4592. PubMed ID: 33336622
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SnO2 nanoparticle-functionalized boron nitride nanotubes.
    Zhi C; Bando Y; Tang C; Golberg D
    J Phys Chem B; 2006 May; 110(17):8548-50. PubMed ID: 16640404
    [TBL] [Abstract][Full Text] [Related]  

  • 37. First-principles calculation of the isotope effect on boron nitride nanotube thermal conductivity.
    Stewart DA; Savić I; Mingo N
    Nano Lett; 2009 Jan; 9(1):81-4. PubMed ID: 19090747
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acute in vitro and in vivo toxicity of a commercial grade boron nitride nanotube mixture.
    Kodali VK; Roberts JR; Shoeb M; Wolfarth MG; Bishop L; Eye T; Barger M; Roach KA; Friend S; Schwegler-Berry D; Chen BT; Stefaniak A; Jordan KC; Whitney RR; Porter DW; Erdely AD
    Nanotoxicology; 2017 Oct; 11(8):1040-1058. PubMed ID: 29094619
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A comprehensive analysis of the CVD growth of boron nitride nanotubes.
    Pakdel A; Zhi C; Bando Y; Nakayama T; Golberg D
    Nanotechnology; 2012 Jun; 23(21):215601. PubMed ID: 22551670
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The structure, stability, and electronic properties of ultra-thin BC2N nanotubes: a first-principles study.
    Wang Y; Zhang J; Huang G; Yao X; Shao Q
    J Mol Model; 2014 Dec; 20(12):2536. PubMed ID: 25451142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.