BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 23397072)

  • 1. Estimating climate change, CO2 and technology development effects on wheat yield in northeast Iran.
    Bannayan M; Mansoori H; Rezaei EE
    Int J Biometeorol; 2014 Apr; 58(3):395-405. PubMed ID: 23397072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial variability of climate change impacts on yield of rice and wheat in the Indian Ganga Basin.
    Mishra A; Singh R; Raghuwanshi NS; Chatterjee C; Froebrich J
    Sci Total Environ; 2013 Dec; 468-469 Suppl():S132-8. PubMed ID: 23800620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drought, Climate Change, and Dryland Wheat Yield Response: An Econometric Approach.
    Shayanmehr S; Rastegari Henneberry S; Sabouhi Sabouni M; Shahnoushi Foroushani N
    Int J Environ Res Public Health; 2020 Jul; 17(14):. PubMed ID: 32708323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining the effects of increased atmospheric carbon dioxide on protein, iron, and zinc availability and projected climate change on global diets: a modelling study.
    Beach RH; Sulser TB; Crimmins A; Cenacchi N; Cole J; Fukagawa NK; Mason-D'Croz D; Myers S; Sarofim MC; Smith M; Ziska LH
    Lancet Planet Health; 2019 Jul; 3(7):e307-e317. PubMed ID: 31326071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impacts of rising temperature, carbon dioxide concentration and sea level on wheat production in North Nile delta.
    Kheir AMS; El Baroudy A; Aiad MA; Zoghdan MG; Abd El-Aziz MA; Ali MGM; Fullen MA
    Sci Total Environ; 2019 Feb; 651(Pt 2):3161-3173. PubMed ID: 30463166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The implication of irrigation in climate change impact assessment: a European-wide study.
    Zhao G; Webber H; Hoffmann H; Wolf J; Siebert S; Ewert F
    Glob Chang Biol; 2015 Nov; 21(11):4031-48. PubMed ID: 26227557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of temperature, precipitation and carbon dioxide concentrations on the requirements for crop irrigation water in China under future climate scenarios.
    Zhang Y; Wang Y; Niu H
    Sci Total Environ; 2019 Mar; 656():373-387. PubMed ID: 30513428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Climate change impact on wheat and maize growth in Ethiopia: A multi-model uncertainty analysis.
    Rettie FM; Gayler S; K D Weber T; Tesfaye K; Streck T
    PLoS One; 2022; 17(1):e0262951. PubMed ID: 35061854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global change impacts on wheat production along an environmental gradient in south Australia.
    Reyenga PJ; Howden SM; Meinke H; Hall WB
    Environ Int; 2001 Sep; 27(2-3):195-200. PubMed ID: 11697669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of predicted evapotranspiration and yield of rainfed wheat in the northeast Iran using gridded AgMERRA weather data.
    Yaghoubi F; Bannayan M; Asadi GA
    Int J Biometeorol; 2020 Sep; 64(9):1519-1537. PubMed ID: 32394107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climate change impacts on crop production in Iran's Zayandeh-Rud River Basin.
    Gohari A; Eslamian S; Abedi-Koupaei J; Massah Bavani A; Wang D; Madani K
    Sci Total Environ; 2013 Jan; 442():405-19. PubMed ID: 23178843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial analysis of the impact of climate change factors and adaptation strategies on productivity of wheat in Ethiopia.
    Araya A; Prasad PVV; Zambreski Z; Gowda PH; Ciampitti IA; Assefa Y; Girma A
    Sci Total Environ; 2020 Aug; 731():139094. PubMed ID: 32417478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The central trend in crop yields under climate change in China: A systematic review.
    Liu Y; Li N; Zhang Z; Huang C; Chen X; Wang F
    Sci Total Environ; 2020 Feb; 704():135355. PubMed ID: 31812435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impacts of climate variability and adaptation strategies on crop yields and soil organic carbon in the US Midwest.
    Liu L; Basso B
    PLoS One; 2020; 15(1):e0225433. PubMed ID: 31990907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SWAT-MODSIM-PSO optimization of multi-crop planning in the Karkheh River Basin, Iran, under the impacts of climate change.
    Fereidoon M; Koch M
    Sci Total Environ; 2018 Jul; 630():502-516. PubMed ID: 29486443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of precipitation and temperature on crop production variability in northeast Iran.
    Bannayan M; Lotfabadi SS; Sanjani S; Mohamadian A; Aghaalikhani M
    Int J Biometeorol; 2011 May; 55(3):387-401. PubMed ID: 20706741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The shifting influence of drought and heat stress for crops in northeast Australia.
    Lobell DB; Hammer GL; Chenu K; Zheng B; McLean G; Chapman SC
    Glob Chang Biol; 2015 Nov; 21(11):4115-27. PubMed ID: 26152643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elevated atmospheric [CO2 ] can dramatically increase wheat yields in semi-arid environments and buffer against heat waves.
    Fitzgerald GJ; Tausz M; O'Leary G; Mollah MR; Tausz-Posch S; Seneweera S; Mock I; Löw M; Partington DL; McNeil D; Norton RM
    Glob Chang Biol; 2016 Jun; 22(6):2269-84. PubMed ID: 26929390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments.
    Cai C; Yin X; He S; Jiang W; Si C; Struik PC; Luo W; Li G; Xie Y; Xiong Y; Pan G
    Glob Chang Biol; 2016 Feb; 22(2):856-74. PubMed ID: 26279285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elucidating the impact of temperature variability and extremes on cereal croplands through remote sensing.
    Duncan JM; Dash J; Atkinson PM
    Glob Chang Biol; 2015 Apr; 21(4):1541-51. PubMed ID: 24930864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.