These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 23397113)

  • 41. Adaptive modifications of postural attitude in conditions of weightlessness.
    Clément G; Lestienne F
    Exp Brain Res; 1988; 72(2):381-9. PubMed ID: 3224649
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Learning to integrate contradictory multisensory self-motion cue pairings.
    Kaliuzhna M; Prsa M; Gale S; Lee SJ; Blanke O
    J Vis; 2015 Jan; 15(1):15.1.10. PubMed ID: 25589294
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Velocity of head movements and sensory-motor adaptation during and after short spaceflight.
    Hlavacka F; Kornilova LN
    J Gravit Physiol; 2004 Jul; 11(2):P13-6. PubMed ID: 16231430
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Vestibular and vestibulo-proprioceptive perception of motion in the horizontal plane in blindfolded man--II. Estimations of rotations about the earth-vertical axis.
    Marlinsky VV
    Neuroscience; 1999 May; 90(2):395-401. PubMed ID: 10215145
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Suprathreshold asymmetries in human motion perception.
    Roditi RE; Crane BT
    Exp Brain Res; 2012 Jun; 219(3):369-79. PubMed ID: 22562587
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of the gravity direction in the environment and the visual polarity and body direction on the perception of object motion.
    Miwa T; Hisakata R; Kaneko H
    Vision Res; 2019 Nov; 164():12-23. PubMed ID: 31542657
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The internal representation of head orientation differs for conscious perception and balance control.
    Dalton BH; Rasman BG; Inglis JT; Blouin JS
    J Physiol; 2017 Apr; 595(8):2731-2749. PubMed ID: 28035656
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Kinelite Project: a new powerful motion analyser for Spacelab and space station.
    Venet M; Pinard H; McIntyre J; Berthoz A; Lacquaniti F
    Acta Astronaut; 1998; 43(3-6):277-89. PubMed ID: 11541931
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characteristics of postural self-regulation in complex spatial environments and after-effects of weightlessness.
    Myasnikov VI; Kozerenko OP; Rudomyotkin NM
    Life Sci Space Res; 1976; 14():313-7. PubMed ID: 12678116
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Vestibular decompensation in labyrinthectomized rats placed in weightlessness during parabolic flight.
    Reber A; Courjon JH; Denise P; Clément G
    Neurosci Lett; 2003 Jun; 344(2):122-6. PubMed ID: 12782342
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interhemispheric control of sensory cue integration and self-motion perception.
    Arshad Q; Ortega MC; Goga U; Lobo R; Siddiqui S; Mediratta S; Bednarczuk NF; Kaski D; Bronstein AM
    Neuroscience; 2019 Jun; 408():378-387. PubMed ID: 31026563
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of rectilinear acceleration and optokinetic and caloric stimulations in space.
    von Baumgarten R; Benson A; Berthoz A; Brandt T; Brand U; Bruzek W; Dichgans J; Kass J; Probst T; Scherer H
    Science; 1984 Jul; 225(4658):208-12. PubMed ID: 6610216
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Spatial orientation of optokinetic nystagmus and ocular pursuit during orbital space flight.
    Moore ST; Cohen B; Raphan T; Berthoz A; Clément G
    Exp Brain Res; 2005 Jan; 160(1):38-59. PubMed ID: 15289967
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Perception of spatial orientation in spasmodic torticollis. Part I: The postural vertical.
    Anastasopoulos D; Bhatia K; Bisdorff A; Bronstein AM; Gresty MA; Marsden CD
    Mov Disord; 1997 Jul; 12(4):561-9. PubMed ID: 9251075
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Some psychological and engineering aspects of the extravehicular activity of astronauts.
    Khrunov EV
    Life Sci Space Res; 1973; 11():91-103. PubMed ID: 11998862
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Examining the Effect of Age on Visual-Vestibular Self-Motion Perception Using a Driving Paradigm.
    Ramkhalawansingh R; Keshavarz B; Haycock B; Shahab S; Campos JL
    Perception; 2017 May; 46(5):566-585. PubMed ID: 27789758
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Human discrimination of head-centred visual-inertial yaw rotations.
    Nesti A; Beykirch KA; Pretto P; Bülthoff HH
    Exp Brain Res; 2015 Dec; 233(12):3553-64. PubMed ID: 26319547
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Leisure time activities in space: a survey of astronauts and cosmonauts.
    Kelly AD; Kanas N
    Acta Astronaut; 1994 Jun; 32(6):451-7. PubMed ID: 11540779
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Vestibular factors influencing the biomedical support of humans in space.
    Lichtenberg BK
    Acta Astronaut; 1988; 17(2):203-6. PubMed ID: 11537098
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Change of temporal-order judgment of sounds during long-lasting exposure to large-field visual motion.
    Teramoto W; Watanabe H; Umemura H
    Perception; 2008; 37(11):1649-66. PubMed ID: 19189730
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.