These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 23397261)

  • 1. Evidence for graded central processing resources in a sequential movement task.
    Verwey WB; Abrahamse EL; De Kleine E; Ruitenberg MF
    Psychol Res; 2014 Jan; 78(1):70-83. PubMed ID: 23397261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cognitive processing in new and practiced discrete keying sequences.
    Verwey WB; Abrahamse EL; de Kleine E
    Front Psychol; 2010; 1():32. PubMed ID: 21833202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concatenating familiar movement sequences: the versatile cognitive processor.
    Verwey WB
    Acta Psychol (Amst); 2001 Jan; 106(1-2):69-95. PubMed ID: 11256340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Processing modes and parallel processors in producing familiar keying sequences.
    Verwey WB
    Psychol Res; 2003 May; 67(2):106-22. PubMed ID: 12739146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the influence of informational content and key-response effect mapping on implicit learning and error monitoring in the serial reaction time (SRT) task.
    Rüsseler J; Münte TF; Wiswede D
    Exp Brain Res; 2018 Jan; 236(1):259-273. PubMed ID: 29128978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effects of two motor tasks on ERPs in an auditory classification task: evidence of shared cognitive resources.
    Schubert M; Johannes S; Koch M; Wieringa BM; Dengler R; Münte TF
    Neurosci Res; 1998 Feb; 30(2):125-34. PubMed ID: 9579646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mental engagement during cognitive and psychomotor tasks: Effects of task type, processing demands, and practice.
    Pendleton DM; Sakalik ML; Moore ML; Tomporowski PD
    Int J Psychophysiol; 2016 Nov; 109():124-131. PubMed ID: 27585951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Response selection in dual task paradigms: observations from random generation tasks.
    Dirnberger G; Jahanshahi M
    Exp Brain Res; 2010 Mar; 201(3):535-48. PubMed ID: 20232508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence learning is driven by improvements in motor planning.
    Ariani G; Diedrichsen J
    J Neurophysiol; 2019 Jun; 121(6):2088-2100. PubMed ID: 30969809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interference between a fast-paced spatial puzzle task and verbal memory demands.
    Epling SL; Blakely MJ; Russell PN; Helton WS
    Exp Brain Res; 2017 Jun; 235(6):1899-1907. PubMed ID: 28314919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Timing and executive resources: dual-task interference patterns between temporal production and shifting, updating, and inhibition tasks.
    Brown SW; Collier SA; Night JC
    J Exp Psychol Hum Percept Perform; 2013 Aug; 39(4):947-63. PubMed ID: 23127475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of sequence length on the execution of familiar keying sequences: lasting segmentation and preparation?
    Verwey WB
    J Mot Behav; 2003 Dec; 35(4):343-54. PubMed ID: 14607772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Explaining the neural activity distribution associated with discrete movement sequences: Evidence for parallel functional systems.
    Verwey WB; Jouen AL; Dominey PF; Ventre-Dominey J
    Cogn Affect Behav Neurosci; 2019 Feb; 19(1):138-153. PubMed ID: 30406305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of dual-tasking with different levels of attention diversion on characteristics of the movement-related cortical potential.
    Aliakbaryhosseinabadi S; Kamavuako EN; Jiang N; Farina D; Mrachacz-Kersting N
    Brain Res; 2017 Nov; 1674():10-19. PubMed ID: 28830767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of age and cognitive load on response reprogramming.
    Korotkevich Y; Trewartha KM; Penhune VB; Li KZ
    Exp Brain Res; 2015 Mar; 233(3):937-46. PubMed ID: 25511168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequential modulation of backward crosstalk and task-shielding in dual-tasking.
    Janczyk M
    J Exp Psychol Hum Percept Perform; 2016 May; 42(5):631-47. PubMed ID: 26594880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effector system-specific sequential modulations of congruency effects.
    Janczyk M; Leuthold H
    Psychon Bull Rev; 2018 Jun; 25(3):1066-1072. PubMed ID: 28608004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endogenous control of task-order preparation in variable dual tasks.
    Strobach T; Kübler S; Schubert T
    Psychol Res; 2021 Feb; 85(1):345-363. PubMed ID: 31667597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissociating controlled from automatic processing in temporal preparation.
    Capizzi M; Sanabria D; Correa Á
    Cognition; 2012 May; 123(2):293-302. PubMed ID: 22397820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relation between temporal perception and inhibitory control in the Go/No-Go task.
    Brown SW; Perreault ST
    Acta Psychol (Amst); 2017 Feb; 173():87-93. PubMed ID: 28024254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.