These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 23397294)

  • 1. The danger signal plus DNA damage two-hit hypothesis for chronic inflammation in COPD.
    Aoshiba K; Tsuji T; Yamaguchi K; Itoh M; Nakamura H
    Eur Respir J; 2013 Dec; 42(6):1689-95. PubMed ID: 23397294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Senescence-associated secretory phenotype and its possible role in chronic obstructive pulmonary disease.
    Kumar M; Seeger W; Voswinckel R
    Am J Respir Cell Mol Biol; 2014 Sep; 51(3):323-33. PubMed ID: 25171460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cigarette smoke-induced oxidative stress: A role in chronic obstructive pulmonary disease skeletal muscle dysfunction.
    Barreiro E; Peinado VI; Galdiz JB; Ferrer E; Marin-Corral J; Sánchez F; Gea J; Barberà JA;
    Am J Respir Crit Care Med; 2010 Aug; 182(4):477-88. PubMed ID: 20413628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Pathogenesis of chronic obstructive pulmonary disease. Molecular mechanisms (part II)].
    Szulakowski P; Mróz RM; Pierzchała W; Chyczewska E; MacNee W
    Wiad Lek; 2006; 59(3-4):250-4. PubMed ID: 16813274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic obstructive pulmonary disease and lung cancer: new molecular insights.
    Adcock IM; Caramori G; Barnes PJ
    Respiration; 2011; 81(4):265-84. PubMed ID: 21430413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased DNA damage in patients with chronic obstructive pulmonary disease who had once smoked or been exposed to biomass.
    Ceylan E; Kocyigit A; Gencer M; Aksoy N; Selek S
    Respir Med; 2006 Jul; 100(7):1270-6. PubMed ID: 16307872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathogenesis of COPD. Part III. Inflammation in COPD.
    Roth M
    Int J Tuberc Lung Dis; 2008 Apr; 12(4):375-80. PubMed ID: 18371261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Senescence hypothesis for the pathogenetic mechanism of chronic obstructive pulmonary disease.
    Aoshiba K; Nagai A
    Proc Am Thorac Soc; 2009 Dec; 6(7):596-601. PubMed ID: 19934355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alveolar cell senescence exacerbates pulmonary inflammation in patients with chronic obstructive pulmonary disease.
    Tsuji T; Aoshiba K; Nagai A
    Respiration; 2010; 80(1):59-70. PubMed ID: 20016134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current perspectives of oxidative stress and its measurement in chronic obstructive pulmonary disease.
    Lin JL; Thomas PS
    COPD; 2010 Aug; 7(4):291-306. PubMed ID: 20673039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative stress and free radicals in COPD--implications and relevance for treatment.
    Domej W; Oettl K; Renner W
    Int J Chron Obstruct Pulmon Dis; 2014; 9():1207-24. PubMed ID: 25378921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerated lung aging: a novel pathogenic mechanism of chronic obstructive pulmonary disease (COPD).
    MacNee W
    Biochem Soc Trans; 2009 Aug; 37(Pt 4):819-23. PubMed ID: 19614601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local inflammation occurs before systemic inflammation in patients with COPD.
    He Z; Chen Y; Chen P; Wu G; Cai S
    Respirology; 2010 Apr; 15(3):478-84. PubMed ID: 20210891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gamma-glutamyltransferase and C-reactive protein in stable chronic obstructive pulmonary disease.
    Biljak VR; Rumora L; Cepelak I; Pancirov D; Popović-Grle S; Sorić J; Stjepanović G; Grubisić TZ
    Coll Antropol; 2013 Mar; 37(1):221-7. PubMed ID: 23697277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Senescence-associated secretory phenotype in a mouse model of bleomycin-induced lung injury.
    Aoshiba K; Tsuji T; Kameyama S; Itoh M; Semba S; Yamaguchi K; Nakamura H
    Exp Toxicol Pathol; 2013 Nov; 65(7-8):1053-62. PubMed ID: 23688655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative stress and gene transcription in asthma and chronic obstructive pulmonary disease: antioxidant therapeutic targets.
    Rahman I
    Curr Drug Targets Inflamm Allergy; 2002 Sep; 1(3):291-315. PubMed ID: 14561194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrosative stress in the bronchial mucosa of severe chronic obstructive pulmonary disease.
    Ricciardolo FL; Caramori G; Ito K; Capelli A; Brun P; Abatangelo G; Papi A; Chung KF; Adcock I; Barnes PJ; Donner CF; Rossi A; Di Stefano A
    J Allergy Clin Immunol; 2005 Nov; 116(5):1028-35. PubMed ID: 16275371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardiovascular disease in chronic obstructive pulmonary disease.
    Hunninghake DB
    Proc Am Thorac Soc; 2005; 2(1):44-9. PubMed ID: 16113468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New paradigms in the pathogenesis of chronic obstructive pulmonary disease I.
    MacNee W; Tuder RM
    Proc Am Thorac Soc; 2009 Sep; 6(6):527-31. PubMed ID: 19741262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rethinking chronic obstructive pulmonary disease.
    Tonello A; Poli G
    Med Hypotheses; 2011 Mar; 76(3):358-60. PubMed ID: 21075542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.