BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 23397419)

  • 21. Phase separation is induced by phenothiazine derivatives in phospholipid/sphingomyelin/cholesterol mixtures containing low levels of cholesterol and sphingomyelin.
    Hendrich AB; Michalak K; Wesołowska O
    Biophys Chem; 2007 Oct; 130(1-2):32-40. PubMed ID: 17662517
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glycosidated phospholipids - a promising group of anti-tumour lipids.
    Semini G; Hildmann A; von Haefen C; Danker K
    Anticancer Agents Med Chem; 2014 May; 14(4):607-17. PubMed ID: 24628240
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ethanol Induces Extracellular Vesicle Secretion by Altering Lipid Metabolism through the Mitochondria-Associated ER Membranes and Sphingomyelinases.
    Ibáñez F; Montesinos J; Area-Gomez E; Guerri C; Pascual M
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445139
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Movement of accessible plasma membrane cholesterol by the GRAMD1 lipid transfer protein complex.
    Naito T; Ercan B; Krshnan L; Triebl A; Koh DHZ; Wei FY; Tomizawa K; Torta FT; Wenk MR; Saheki Y
    Elife; 2019 Nov; 8():. PubMed ID: 31724953
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cholesterol interactions with phospholipids in membranes.
    Ohvo-Rekilä H; Ramstedt B; Leppimäki P; Slotte JP
    Prog Lipid Res; 2002 Jan; 41(1):66-97. PubMed ID: 11694269
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anticancer alkylphospholipids: mechanisms of action, cellular sensitivity and resistance, and clinical prospects.
    van Blitterswijk WJ; Verheij M
    Curr Pharm Des; 2008; 14(21):2061-74. PubMed ID: 18691116
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Active membrane cholesterol as a physiological effector.
    Lange Y; Steck TL
    Chem Phys Lipids; 2016 Sep; 199():74-93. PubMed ID: 26874289
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Affinity of alkylphosphocholines to biological membrane of prostate cancer: studies in natural and model systems.
    Wnętrzak A; Lipiec E; Łątka K; Kwiatek W; Dynarowicz-Łątka P
    J Membr Biol; 2014 Jul; 247(7):581-9. PubMed ID: 24848301
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unnatural Peptide Assemblies Rapidly Deplete Cholesterol and Potently Inhibit Cancer Cells.
    Zhang Q; Tan W; Liu Z; Zhang Y; Wei WS; Fraden S; Xu B
    J Am Chem Soc; 2024 May; 146(19):12901-12906. PubMed ID: 38701349
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phospholipid translocation in the endoplasmic reticulum.
    Devaux PF
    Subcell Biochem; 1993; 21():273-85. PubMed ID: 8256270
    [No Abstract]   [Full Text] [Related]  

  • 31. Mass transport in tumors: characterization and applications to chemotherapy.
    Jain RK; Weissbrod JM; Wei J
    Adv Cancer Res; 1980; 33():251-310. PubMed ID: 7006335
    [No Abstract]   [Full Text] [Related]  

  • 32. Mechanisms of action of phospholipid analogs as anticancer compounds.
    Wieder T; Reutter W; Orfanos CE; Geilen CC
    Prog Lipid Res; 1999 May; 38(3):249-59. PubMed ID: 10664795
    [No Abstract]   [Full Text] [Related]  

  • 33. Heterocyclic alkylphospholipids with an improved therapeutic range.
    Hilgard P; Stekar J; Klenner T; Nössner B; Kutscher B; Engel J
    Adv Exp Med Biol; 1996; 416():157-64. PubMed ID: 9131142
    [No Abstract]   [Full Text] [Related]  

  • 34. Dual Gene Delivery Reagents From Antiproliferative Alkylphospholipids for Combined Antitumor Therapy.
    Gaillard B; Remy JS; Pons F; Lebeau L
    Front Chem; 2020; 8():581260. PubMed ID: 33134279
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Membranes and cancer chemotherapy.
    Burns CP
    Cancer Invest; 1988; 6(4):439-51. PubMed ID: 3052704
    [No Abstract]   [Full Text] [Related]  

  • 36. Cell surface sphingomyelin: key role in cancer initiation, progression, and immune evasion.
    Tallima H; Azzazy HME; El Ridi R
    Lipids Health Dis; 2021 Oct; 20(1):150. PubMed ID: 34717628
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lipid efflux mediated by alkylphospholipids in HepG2 cells.
    Ríos-Marco P; Segovia JL; Jiménez-López JM; Marco C; Carrasco MP
    Cell Biochem Biophys; 2013 Jul; 66(3):737-46. PubMed ID: 23397419
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antitumoral alkylphospholipids induce cholesterol efflux from the plasma membrane in HepG2 cells.
    Ríos-Marco P; Jiménez-López JM; Marco C; Segovia JL; Carrasco MP
    J Pharmacol Exp Ther; 2011 Mar; 336(3):866-73. PubMed ID: 21148684
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antitumoral alkylphospholipids alter cell lipid metabolism.
    Marco C; Ríos-Marco P; Jiménez-López JM; Segovia JL; Carrasco MP
    Anticancer Agents Med Chem; 2014 May; 14(4):545-58. PubMed ID: 24628237
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hexadecylphosphocholine alters nonvesicular cholesterol traffic from the plasma membrane to the endoplasmic reticulum and inhibits the synthesis of sphingomyelin in HepG2 cells.
    Marco C; Jiménez-López JM; Ríos-Marco P; Segovia JL; Carrasco MP
    Int J Biochem Cell Biol; 2009 Jun; 41(6):1296-303. PubMed ID: 19084611
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.