These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 23397431)

  • 1. Influence of skin type and wavelength on light wave reflectance.
    Fallow BA; Tarumi T; Tanaka H
    J Clin Monit Comput; 2013 Jun; 27(3):313-7. PubMed ID: 23397431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The advantages of wearable green reflected photoplethysmography.
    Maeda Y; Sekine M; Tamura T
    J Med Syst; 2011 Oct; 35(5):829-34. PubMed ID: 20703690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smart photoplethysmographic sensor for pulse wave registration at different vascular depths.
    Leier M; Pilt K; Karai D; Jervan G
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():1849-52. PubMed ID: 26736641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous recording of skin blood pulsations at different vascular depths by multiwavelength photoplethysmography.
    Spigulis J; Gailite L; Lihachev A; Erts R
    Appl Opt; 2007 Apr; 46(10):1754-9. PubMed ID: 17356618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison between red, green and blue light reflection photoplethysmography for heart rate monitoring during motion.
    Lee J; Matsumura K; Yamakoshi K; Rolfe P; Tanaka S; Yamakoshi T
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1724-7. PubMed ID: 24110039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of Multi-Wavelength Optical Sensor Module for Depth-Dependent Photoplethysmography.
    Han S; Roh D; Park J; Shin H
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pilot Study Assessing the Influence of Skin Type on the Heart Rate Measurements Obtained by Photoplethysmography with the Apple Watch.
    Sañudo B; De Hoyo M; Muñoz-López A; Perry J; Abt G
    J Med Syst; 2019 May; 43(7):195. PubMed ID: 31119387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoplethysmography. Part 2. Influence of light source wavelength.
    Lindberg LG; Oberg PA
    Med Biol Eng Comput; 1991 Jan; 29(1):48-54. PubMed ID: 2016920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of reflected green light and infrared photoplethysmography.
    Maeda Y; Sekine M; Tamura T; Moriya A; Suzuki T; Kameyama K
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2270-2. PubMed ID: 19163152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. iPhone 4s photoplethysmography: which light color yields the most accurate heart rate and normalized pulse volume using the iPhysioMeter Application in the presence of motion artifact?
    Matsumura K; Rolfe P; Lee J; Yamakoshi T
    PLoS One; 2014; 9(3):e91205. PubMed ID: 24618594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New insights into the origin of remote PPG signals in visible light and infrared.
    Moço AV; Stuijk S; de Haan G
    Sci Rep; 2018 May; 8(1):8501. PubMed ID: 29855610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of makeup on remote-PPG monitoring.
    Wang W; Shan C
    Biomed Phys Eng Express; 2020 Mar; 6(3):035004. PubMed ID: 33438649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-invasive continuous estimation of blood flow changes in human patellar bone.
    Näslund J; Pettersson J; Lundeberg T; Linnarsson D; Lindberg LG
    Med Biol Eng Comput; 2006 Jun; 44(6):501-9. PubMed ID: 16937201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forehead reflectance photoplethysmography to monitor heart rate: preliminary results from neonatal patients.
    Grubb MR; Carpenter J; Crowe JA; Teoh J; Marlow N; Ward C; Mann C; Sharkey D; Hayes-Gill BR
    Physiol Meas; 2014 May; 35(5):881-93. PubMed ID: 24742972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring of heart and respiratory rates by photoplethysmography using a digital filtering technique.
    Nakajima K; Tamura T; Miike H
    Med Eng Phys; 1996 Jul; 18(5):365-72. PubMed ID: 8818134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo performance of a visible wavelength optical sensor for monitoring intestinal perfusion and oxygenation.
    Robinson MB; Wisniowiecki AM; Butcher RJ; Wilson MA; Nance Ericson M; Cote GL
    J Biomed Opt; 2018 May; 23(5):1-12. PubMed ID: 29777581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noise-Robust Heart Rate Estimation Algorithm from Photoplethysmography Signal with Low Computational Complexity.
    Shin J; Cho J
    J Healthc Eng; 2019; 2019():6283279. PubMed ID: 31249654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between measurement site and motion artifacts in wearable reflected photoplethysmography.
    Maeda Y; Sekine M; Tamura T
    J Med Syst; 2011 Oct; 35(5):969-76. PubMed ID: 20703691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The time-variable photoplethysmographic signal; dependence of the heart synchronous signal on wavelength and sample volume.
    Ugnell H; Oberg PA
    Med Eng Phys; 1995 Dec; 17(8):571-8. PubMed ID: 8564151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo investigation of ear canal pulse oximetry during hypothermia.
    Budidha K; Kyriacou PA
    J Clin Monit Comput; 2018 Feb; 32(1):97-107. PubMed ID: 28130679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.