These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 23397509)

  • 1. Regional variations in the nonlinearity and anisotropy of bovine aortic elastin.
    Agrawal V; Kollimada SA; Byju AG; Gundiah N
    Biomech Model Mechanobiol; 2013 Nov; 12(6):1181-94. PubMed ID: 23397509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of elastase and collagenase on the nonlinearity and anisotropy of porcine aorta.
    Gundiah N; Babu AR; Pruitt LA
    Physiol Meas; 2013 Dec; 34(12):1657-73. PubMed ID: 24217223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The biomechanics of arterial elastin.
    Gundiah N; Ratcliffe MB; Pruitt LA
    J Mech Behav Biomed Mater; 2009 Jul; 2(3):288-96. PubMed ID: 19627833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An experimental and theoretical study on the anisotropy of elastin network.
    Zou Y; Zhang Y
    Ann Biomed Eng; 2009 Aug; 37(8):1572-83. PubMed ID: 19484387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of strain energy function for arterial elastin: Experiments using histology and mechanical tests.
    Gundiah N; B Ratcliffe M; A Pruitt L
    J Biomech; 2007; 40(3):586-94. PubMed ID: 16643925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying the contributions of structure to annulus fibrosus mechanical function using a nonlinear, anisotropic, hyperelastic model.
    Guerin HL; Elliott DM
    J Orthop Res; 2007 Apr; 25(4):508-16. PubMed ID: 17149747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biaxial mechanical properties of the human thoracic and abdominal aorta, common carotid, subclavian, renal and common iliac arteries.
    Kamenskiy AV; Dzenis YA; Kazmi SA; Pemberton MA; Pipinos II; Phillips NY; Herber K; Woodford T; Bowen RE; Lomneth CS; MacTaggart JN
    Biomech Model Mechanobiol; 2014 Nov; 13(6):1341-59. PubMed ID: 24710603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of elastin anisotropy in structural strain energy functions of arterial tissue.
    Rezakhaniha R; Fonck E; Genoud C; Stergiopulos N
    Biomech Model Mechanobiol; 2011 Jul; 10(4):599-611. PubMed ID: 21058025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical and structural contributions of elastin and collagen fibers to interlamellar bonding in the arterial wall.
    Wang R; Yu X; Zhang Y
    Biomech Model Mechanobiol; 2021 Feb; 20(1):93-106. PubMed ID: 32705413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling the mechanical response of elastin for arterial tissue.
    Watton PN; Ventikos Y; Holzapfel GA
    J Biomech; 2009 Jun; 42(9):1320-5. PubMed ID: 19394942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of glucose on the biomechanical function of arterial elastin.
    Wang Y; Zeinali-Davarani S; Davis EC; Zhang Y
    J Mech Behav Biomed Mater; 2015 Sep; 49():244-54. PubMed ID: 26042769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and Functional Differences Between Porcine Aorta and Vena Cava.
    Mattson JM; Zhang Y
    J Biomech Eng; 2017 Jul; 139(7):0710071-8. PubMed ID: 28303272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical properties of elastin along the thoracic aorta in the pig.
    Lillie MA; Gosline JM
    J Biomech; 2007; 40(10):2214-21. PubMed ID: 17174959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-based constitutive model can accurately predict planar biaxial properties of aortic wall tissue.
    Polzer S; Gasser TC; Novak K; Man V; Tichy M; Skacel P; Bursa J
    Acta Biomater; 2015 Mar; 14():133-45. PubMed ID: 25458466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transmural variation in elastin fiber orientation distribution in the arterial wall.
    Yu X; Wang Y; Zhang Y
    J Mech Behav Biomed Mater; 2018 Jan; 77():745-753. PubMed ID: 28838859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biaxial mechanical behavior of bovine saphenous venous valve leaflets.
    Lu J; Huang HS
    J Mech Behav Biomed Mater; 2018 Jan; 77():594-599. PubMed ID: 29096125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental investigation and constitutive modeling of the 3D histomechanical properties of vein tissue.
    Sokolis DP
    Biomech Model Mechanobiol; 2013 Jun; 12(3):431-51. PubMed ID: 22706981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of oxidation on the mechanical response and microstructure of porcine aortas.
    Stephen EA; Venkatasubramaniam A; Good TA; Topoleski LD
    J Biomed Mater Res A; 2014 Sep; 102(9):3255-62. PubMed ID: 24123723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Significant material property differences between the porcine ascending aorta and aortic sinuses.
    Gundiah N; Matthews PB; Karimi R; Azadani A; Guccione J; Guy TS; Saloner D; Tseng EE
    J Heart Valve Dis; 2008 Nov; 17(6):606-13. PubMed ID: 19137790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A structural basis for the aortic stress-strain relation in uniaxial tension.
    Sokolis DP; Kefaloyannis EM; Kouloukoussa M; Marinos E; Boudoulas H; Karayannacos PE
    J Biomech; 2006; 39(9):1651-62. PubMed ID: 16045914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.