These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 2339780)

  • 1. Hexose monophosphate shunt measurement in cultured cells with [1-13C]glucose: correction for endogenous carbon sources using [6-13C] glucose.
    Kingsley-Hickman PB; Ross BD; Krick T
    Anal Biochem; 1990 Mar; 185(2):235-7. PubMed ID: 2339780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gas chromatographic-mass spectrometric analysis of hexose monophosphate shunt activity in cultured cells.
    Mitchell SL; Ross BD; Krick T; Garwood M
    Biochem Biophys Res Commun; 1989 Jan; 158(2):474-9. PubMed ID: 2916995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton NMR spectroscopy of glucose consumption by cultured lens epithelial cells.
    Cheng HM; Aguiar E; Ford JJ; Kelleher P; Lam DM
    J Ocul Pharmacol; 1986; 2(4):319-24. PubMed ID: 3503116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic loss of deuterium from isotopically labeled glucose.
    Ben-Yoseph O; Kingsley PB; Ross BD
    Magn Reson Med; 1994 Sep; 32(3):405-9. PubMed ID: 7984074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic flux determination in C6 glioma cells using carbon-13 distribution upon [1-13C]glucose incubation.
    Portais JC; Schuster R; Merle M; Canioni P
    Eur J Biochem; 1993 Oct; 217(1):457-68. PubMed ID: 7901007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of concurrent glucose consumption by the hexose monophosphate shunt, glycolysis, and the polyol pathway in the crystalline lens.
    Cheng HM; Xiong J; Tanaka G; Chang C; Asterlin AA; Aguayo JB
    Exp Eye Res; 1991 Sep; 53(3):363-6. PubMed ID: 1936172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucose uptake, hexose monophosphate shunt activity, and oxygen consumption in cultured human retinal pigment epithelial cells.
    Miceli MV; Newsome DA; Schriver GW
    Invest Ophthalmol Vis Sci; 1990 Feb; 31(2):277-83. PubMed ID: 2303329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose metabolism in mammalian cells as determined by mass isotopomer analysis.
    Lin YY; Cheng WB; Wright CE
    Anal Biochem; 1993 Mar; 209(2):267-73. PubMed ID: 8470798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mass isotopomer study of the nonoxidative pathways of the pentose cycle with [1,2-13C2]glucose.
    Lee WN; Boros LG; Puigjaner J; Bassilian S; Lim S; Cascante M
    Am J Physiol; 1998 May; 274(5):E843-51. PubMed ID: 9612242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic measurements of cerebral pentose phosphate pathway activity in vivo using [1,6-13C2,6,6-2H2]glucose and microdialysis.
    Ben-Yoseph O; Camp DM; Robinson TE; Ross BD
    J Neurochem; 1995 Mar; 64(3):1336-42. PubMed ID: 7861166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbohydrate metabolism of the rat C6 glioma. An in vivo 13C and in vitro 1H magnetic resonance spectroscopy study.
    Ross BD; Higgins RJ; Boggan JE; Willis JA; Knittel B; Unger SW
    NMR Biomed; 1988 Feb; 1(1):20-6. PubMed ID: 3275020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [1-13C]glucose metabolism in rat cerebellar granule cells and astrocytes in primary culture. Evaluation of flux parameters by 13C- and 1H-NMR spectroscopy.
    Martin M; Portais JC; Labouesse J; Canioni P; Merle M
    Eur J Biochem; 1993 Oct; 217(2):617-25. PubMed ID: 7901011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lactate is a preferential oxidative energy substrate over glucose for neurons in culture.
    Bouzier-Sore AK; Voisin P; Canioni P; Magistretti PJ; Pellerin L
    J Cereb Blood Flow Metab; 2003 Nov; 23(11):1298-306. PubMed ID: 14600437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Futile cycling of lactate through the plasma membrane of C6 glioma cells as detected by (13C, 2H) NMR.
    Rodrigues TB; Gray HL; Benito M; Garrido S; Sierra A; Geraldes CF; Ballesteros P; Cerdán S
    J Neurosci Res; 2005 Jan 1-15; 79(1-2):119-27. PubMed ID: 15562438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of pentose phosphate-pathway activity in a single incubation with [1,6-13C2,6,6-2H2]glucose.
    Ross BD; Kingsley PB; Ben-Yoseph O
    Biochem J; 1994 Aug; 302 ( Pt 1)(Pt 1):31-8. PubMed ID: 8068020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compartmentation of lactate and glucose metabolism in C6 glioma cells. A 13c and 1H NMR study.
    Bouzier AK; Goodwin R; de Gannes FM; Valeins H; Voisin P; Canioni P; Merle M
    J Biol Chem; 1998 Oct; 273(42):27162-9. PubMed ID: 9765235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism of [1-13C] glucose in extracts and in immobilized rat glioma C6 cell cultures: effects of hypoxia.
    Perrin A; Duborjal H; Roudier E; Massarelli R
    Arch Ital Biol; 2003 Feb; 141(1):1-10. PubMed ID: 12659045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 13C nuclear magnetic resonance and gas chromatography-mass spectrometry studies of carbon metabolism in the actinomycin D producer Streptomyces parvulus by use of 13C-labeled precursors.
    Inbar L; Lapidot A
    J Bacteriol; 1991 Dec; 173(24):7790-801. PubMed ID: 1744035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isotopomer study of lipogenesis in human hepatoma cells in culture: contribution of carbon and hydrogen atoms from glucose.
    Lee WN; Byerley LO; Bassilian S; Ajie HO; Clark I; Edmond J; Bergner EA
    Anal Biochem; 1995 Mar; 226(1):100-12. PubMed ID: 7785761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beta-adrenergic stimulation of C6 glioma cells: effects of cAMP overproduction on cellular metabolites. A multinuclear NMR study.
    Pianet I; Canioni P; Labouesse J; Merle M
    Eur J Biochem; 1992 Oct; 209(2):707-15. PubMed ID: 1330556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.