These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 2339780)
21. Radiometric assessment of hexose monophosphate shunt capacity in erythrocytes of rhinoceroses. Paglia DE; Weber B; Baumgarten I; Harley EH Am J Vet Res; 2001 Jul; 62(7):1113-7. PubMed ID: 11453488 [TBL] [Abstract][Full Text] [Related]
22. Glucose dependence of glycolysis, hexose monophosphate shunt activity, energy status, and the polyol pathway in retinas isolated from normal (nondiabetic) rats. Winkler BS; Arnold MJ; Brassell MA; Sliter DR Invest Ophthalmol Vis Sci; 1997 Jan; 38(1):62-71. PubMed ID: 9008631 [TBL] [Abstract][Full Text] [Related]
23. (13)C metabolic flux analysis in neurons utilizing a model that accounts for hexose phosphate recycling within the pentose phosphate pathway. Gebril HM; Avula B; Wang YH; Khan IA; Jekabsons MB Neurochem Int; 2016 Feb; 93():26-39. PubMed ID: 26723542 [TBL] [Abstract][Full Text] [Related]
24. Estimation of glucose carbon recycling in children with glycogen storage disease: A 13C NMR study using [U-13C]glucose. Kalderon B; Korman SH; Gutman A; Lapidot A Proc Natl Acad Sci U S A; 1989 Jun; 86(12):4690-4. PubMed ID: 2734314 [TBL] [Abstract][Full Text] [Related]
25. Quantitation of erythrocyte pentose pathway flux with [2-13C]glucose and 1H NMR analysis of the lactate methyl signal. Delgado TC; Castro MM; Geraldes CF; Jones JG Magn Reson Med; 2004 Jun; 51(6):1283-6. PubMed ID: 15170851 [TBL] [Abstract][Full Text] [Related]
26. Localized detection of glioma glycolysis using edited 1H MRS. Schupp DG; Merkle H; Ellermann JM; Ke Y; Garwood M Magn Reson Med; 1993 Jul; 30(1):18-27. PubMed ID: 8371670 [TBL] [Abstract][Full Text] [Related]
27. Lactate turnover in rat glioma measured by in vivo nuclear magnetic resonance spectroscopy. Terpstra M; Gruetter R; High WB; Mescher M; DelaBarre L; Merkle H; Garwood M Cancer Res; 1998 Nov; 58(22):5083-8. PubMed ID: 9823316 [TBL] [Abstract][Full Text] [Related]
28. Rhabdomyosarcoma cells show an energy producing anabolic metabolic phenotype compared with primary myocytes. Fan TW; Kucia M; Jankowski K; Higashi RM; Ratajczak J; Ratajczak MZ; Lane AN Mol Cancer; 2008 Oct; 7():79. PubMed ID: 18939998 [TBL] [Abstract][Full Text] [Related]
29. Metabolism of alpha-D-[1,2-13C]glucose pentaacetate and alpha-D-glucose penta[2-13C]acetate in rat hepatocytes. Malaisse WJ; Ladrière L; Kadiata MM; Verbruggen I; Willem R Arch Biochem Biophys; 2000 Sep; 381(1):61-6. PubMed ID: 11019820 [TBL] [Abstract][Full Text] [Related]
30. Determination of (13C) urea enrichment by gas chromatography/mass spectrometry and gas chromatography/isotope ratio mass spectrometry. Beylot M; David F; Khalfallah Y; Normand S; Large V; Brunengraber H Biol Mass Spectrom; 1994 Aug; 23(8):510-3. PubMed ID: 7918692 [TBL] [Abstract][Full Text] [Related]
31. 13C-NMR, 1H-NMR and gas-chromatography mass-spectrometry studies of the biosynthesis of 13C-enriched L-lysine by Brevibacterium flavum. Inbar L; Lapidot A Eur J Biochem; 1987 Feb; 162(3):621-33. PubMed ID: 3030742 [TBL] [Abstract][Full Text] [Related]
32. Glucose and lactate metabolism in C6 glioma cells: evidence for the preferential utilization of lactate for cell oxidative metabolism. Bouzier AK; Voisin P; Goodwin R; Canioni P; Merle M Dev Neurosci; 1998; 20(4-5):331-8. PubMed ID: 9778569 [TBL] [Abstract][Full Text] [Related]
33. Oxidative stress in the central nervous system: monitoring the metabolic response using the pentose phosphate pathway. Ben-Yoseph O; Boxer PA; Ross BD Dev Neurosci; 1994; 16(5-6):328-36. PubMed ID: 7768213 [TBL] [Abstract][Full Text] [Related]
34. An NMR study of alterations in [1-13C]glucose metabolism in C6 glioma cells by gliotoxic amino acids. Brennan L; Hewage C; Malthouse JP; McBean GJ Neurochem Int; 2003 May; 42(6):441-8. PubMed ID: 12547642 [TBL] [Abstract][Full Text] [Related]
35. 1H-Observe/13C-decouple spectroscopic measurements of lactate and glutamate in the rat brain in vivo. Rothman DL; Behar KL; Hetherington HP; den Hollander JA; Bendall MR; Petroff OA; Shulman RG Proc Natl Acad Sci U S A; 1985 Mar; 82(6):1633-7. PubMed ID: 2858850 [TBL] [Abstract][Full Text] [Related]
36. Metabolism of glucose into glutamate via the hexose monophosphate shunt and its inhibition by 6-aminonicotinamide in rat brain in vivo. Gaitonde MK; Jones J; Evans G Proc R Soc Lond B Biol Sci; 1987 Jun; 231(1262):71-90. PubMed ID: 2888118 [TBL] [Abstract][Full Text] [Related]
37. Nuclear magnetic resonance studies of sugar metabolism in the human infant lens. Cheng HM; Xiong J; Hirose S; Igarashi H; Hirose T Ophthalmic Res; 1996; 28 Suppl 2():5-10. PubMed ID: 8883083 [TBL] [Abstract][Full Text] [Related]
39. Dynamic assessment of hexose monophosphate shunt activity in the intact rabbit lens by proton NMR spectroscopy. Willis JA; Williams WF; Schleich T Biochem Biophys Res Commun; 1986 Aug; 138(3):1068-73. PubMed ID: 3753487 [TBL] [Abstract][Full Text] [Related]
40. 13C-labeled gluconate tracing as a direct and accurate method for determining the pentose phosphate pathway split ratio in Penicillium chrysogenum. Kleijn RJ; van Winden WA; Ras C; van Gulik WM; Schipper D; Heijnen JJ Appl Environ Microbiol; 2006 Jul; 72(7):4743-54. PubMed ID: 16820467 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]