BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 23397864)

  • 21. Long-term changes in bone mineral and biomechanical properties of vertebrae and femur in aging, dietary calcium restricted, and/or estrogen-deprived/-replaced rats.
    Jiang Y; Zhao J; Genant HK; Dequeker J; Geusens P
    J Bone Miner Res; 1997 May; 12(5):820-31. PubMed ID: 9144349
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of stanozolol on bone mineral density and bone biomechanical properties of osteoporotic rats.
    Liao JM; Wu T; Li QN; Hu B; Huang LF; Li ZH; Yuan L; Zhong SZ
    Di Yi Jun Yi Da Xue Xue Bao; 2003 Nov; 23(11):1117-20. PubMed ID: 14625163
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Effect of cyclooxygenase-2 on bone loss in ovariectomized rats].
    Guo Y; Zhang CY; Tian Y; DI JM; Qin S
    Zhonghua Fu Chan Ke Za Zhi; 2012 Jun; 47(6):458-62. PubMed ID: 22932114
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Changes in bone mass, bone structure, bone biomechanical properties, and bone metabolism after spinal cord injury: a 6-month longitudinal study in growing rats.
    Jiang SD; Jiang LS; Dai LY
    Calcif Tissue Int; 2007 Mar; 80(3):167-75. PubMed ID: 17340221
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Effects of Chinese kidney-tonifying drugs on bone mineral density (BMD), biomechanics, 25-hydroxy vitamin D3 and 1,25-dihydroxy vitamin D3 of ovariectomized osteoporosis rats].
    Shuai B; Shen L; Yang YP; Xie J; Zhou PQ; Li H; Guo XF; Zhao J; Wu JL
    Zhongguo Gu Shang; 2008 Nov; 21(11):850-3. PubMed ID: 19143251
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intensive electrical stimulation attenuates femoral bone loss in acute spinal cord injury.
    Groah SL; Lichy AM; Libin AV; Ljungberg I
    PM R; 2010 Dec; 2(12):1080-7. PubMed ID: 21145519
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sequential and precise in vivo measurement of bone mineral density in rats using dual-energy x-ray absorptiometry.
    Ammann P; Rizzoli R; Slosman D; Bonjour JP
    J Bone Miner Res; 1992 Mar; 7(3):311-6. PubMed ID: 1585832
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [The impacts of sex hormones on histomorphometric and histological appearances of bone in ovariectomized rats].
    Yong H; Cheng Y
    Zhonghua Fu Chan Ke Za Zhi; 1999 Feb; 34(2):90-3. PubMed ID: 11263205
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Speed of sound in bone at the tibia: is it related to lower limb bone mineral density in spinal-cord-injured individuals?
    Giangregorio LM; Webber CE
    Spinal Cord; 2004 Mar; 42(3):141-5. PubMed ID: 15001978
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of Bone Mineral Density at the Distal Femur and the Proximal Tibia by Dual-Energy X-ray Absorptiometry in Individuals With Spinal Cord Injury: Precision of Protocol and Relation to Injury Duration.
    Lobos S; Cooke A; Simonett G; Ho C; Boyd SK; Edwards WB
    J Clin Densitom; 2018; 21(3):338-346. PubMed ID: 28662973
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relationship between bone turnover and bone density at the proximal femur in stroke patients.
    Paker N; Bugdayci D; Tekdos D; Dere C; Kaya B
    J Stroke Cerebrovasc Dis; 2009; 18(2):139-43. PubMed ID: 19251190
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bone loss at the os calcis compared with bone loss at the knee in individuals with spinal cord injury.
    Garland DE; Adkins RH; Scott M; Singh H; Massih M; Stewart C
    J Spinal Cord Med; 2004; 27(3):207-11. PubMed ID: 15478521
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Droloxifene prevents ovariectomy-induced bone loss in tibiae and femora of aged female rats: a dual-energy X-ray absorptiometric and histomorphometric study.
    Chen HK; Ke HZ; Jee WS; Ma YF; Pirie CM; Simmons HA; Thompson DD
    J Bone Miner Res; 1995 Aug; 10(8):1256-62. PubMed ID: 8585430
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bone architecture adaptations after spinal cord injury: impact of long-term vibration of a constrained lower limb.
    Dudley-Javoroski S; Petrie MA; McHenry CL; Amelon RE; Saha PK; Shields RK
    Osteoporos Int; 2016 Mar; 27(3):1149-1160. PubMed ID: 26395887
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of the effect of ovariectomy on bone mass in dentate and edentulous mandibles of adult rats.
    Elsubeihi ES; Heersche JN
    Eur J Prosthodont Restor Dent; 2009 Mar; 17(1):9-21. PubMed ID: 19378616
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Increased bone mineral density after prolonged electrically induced cycle training of paralyzed limbs in spinal cord injured man.
    Mohr T; Podenphant J; Biering-Sorensen F; Galbo H; Thamsborg G; Kjaer M
    Calcif Tissue Int; 1997 Jul; 61(1):22-5. PubMed ID: 9192506
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Trabecular Bone Score at the Distal Femur and Proximal Tibia in Individuals With Spinal Cord Injury.
    Lobos S; Cooke A; Simonett G; Ho C; Boyd SK; Edwards WB
    J Clin Densitom; 2019; 22(2):249-256. PubMed ID: 29776736
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High volumes of resistance exercise are not required for greater bone mineral density during growth.
    Ahles CP; Singh H; Joo W; Lee Y; Lee LC; Colazas W; Pierce RA; Prakash A; Jaque SV; Sumida KD
    Med Sci Sports Exerc; 2013 Jan; 45(1):36-42. PubMed ID: 22843104
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of functional electrical stimulation cycling exercise on bone mineral density loss in the early stages of spinal cord injury.
    Lai CH; Chang WH; Chan WP; Peng CW; Shen LK; Chen JJ; Chen SC
    J Rehabil Med; 2010 Feb; 42(2):150-4. PubMed ID: 20140411
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Longitudinal evaluation of mouse hind limb bone loss after spinal cord injury using novel, in vivo, methodology.
    McManus MM; Grill RJ
    J Vis Exp; 2011 Dec; (58):. PubMed ID: 22158515
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.