These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 23397883)
1. Enhanced pseudocapacitance of ionic liquid/cobalt hydroxide nanohybrids. Choi BG; Yang M; Jung SC; Lee KG; Kim JG; Park H; Park TJ; Lee SB; Han YK; Huh YS ACS Nano; 2013 Mar; 7(3):2453-60. PubMed ID: 23397883 [TBL] [Abstract][Full Text] [Related]
2. Combination of lightweight elements and nanostructured materials for batteries. Chen J; Cheng F Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236 [TBL] [Abstract][Full Text] [Related]
3. Tailoring Co(OH)2 hollow nanostructures via Cu2O template etching for high performance supercapacitors. Yang H; Xie J; Bao Sj; Li CM J Colloid Interface Sci; 2015 Nov; 457():212-7. PubMed ID: 26188727 [TBL] [Abstract][Full Text] [Related]
4. Enhanced supercapacitive performance of chemically grown cobalt-nickel hydroxides on three-dimensional graphene foam electrodes. Patil UM; Sohn JS; Kulkarni SB; Lee SC; Park HG; Gurav KV; Kim JH; Jun SC ACS Appl Mater Interfaces; 2014 Feb; 6(4):2450-8. PubMed ID: 24495203 [TBL] [Abstract][Full Text] [Related]
5. Nanostructured (Co, Ni)-based compounds coated on a highly conductive three dimensional hollow carbon nanorod array (HCNA) scaffold for high performance pseudocapacitors. Wan L; Xiao J; Xiao F; Wang S ACS Appl Mater Interfaces; 2014 May; 6(10):7735-42. PubMed ID: 24755163 [TBL] [Abstract][Full Text] [Related]
6. Microwave-mediated synthesis for improved morphology and pseudocapacitance performance of nickel oxide. Meher SK; Justin P; Rao GR ACS Appl Mater Interfaces; 2011 Jun; 3(6):2063-73. PubMed ID: 21568334 [TBL] [Abstract][Full Text] [Related]
7. Protonation and reactivity towards carbon dioxide of the mononuclear tetrahedral zinc and cobalt hydroxide complexes, [Tp(Bu)t(,Me)]ZnOH and [Tp(Bu)t(,Me)]CoOH: comparison of the reactivity of the metal hydroxide function in synthetic analogues of carbonic anhydrase. Bergquist C; Fillebeen T; Morlok MM; Parkin G J Am Chem Soc; 2003 May; 125(20):6189-99. PubMed ID: 12785851 [TBL] [Abstract][Full Text] [Related]
8. Low cost facile synthesis of large-area cobalt hydroxide nanorods with remarkable pseudocapacitance. Deng MJ; Song CZ; Wang CC; Tseng YC; Chen JM; Lu KT ACS Appl Mater Interfaces; 2015 May; 7(17):9147-56. PubMed ID: 25874993 [TBL] [Abstract][Full Text] [Related]
9. Amorphous cobalt hydroxide with superior pseudocapacitive performance. Li HB; Yu MH; Lu XH; Liu P; Liang Y; Xiao J; Tong YX; Yang GW ACS Appl Mater Interfaces; 2014 Jan; 6(2):745-9. PubMed ID: 24386890 [TBL] [Abstract][Full Text] [Related]
10. Boosted electrochemical properties from the surface engineering of ultrathin interlaced Ni(OH) Shi D; Zhang L; Zhang N; Zhang YW; Yu ZG; Gong H Nanoscale; 2018 Jun; 10(22):10554-10563. PubMed ID: 29808204 [TBL] [Abstract][Full Text] [Related]
11. Design of a Scalable Dendritic Copper@Ni Miao Y; Wang T; Hua J; Liu K; Hu Z; Li Q; Zhang M; Zhang Y; Liu S; Xue X; Qi J; Wei F; Meng Q; Ren Y; Xiao B; Sui Y; Cao P ACS Appl Mater Interfaces; 2021 Aug; 13(33):39205-39214. PubMed ID: 34398609 [TBL] [Abstract][Full Text] [Related]
12. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. Wang H; Casalongue HS; Liang Y; Dai H J Am Chem Soc; 2010 Jun; 132(21):7472-7. PubMed ID: 20443559 [TBL] [Abstract][Full Text] [Related]
13. Platelet CMK-5 as an excellent mesoporous carbon to enhance the pseudocapacitance of polyaniline. Lei Z; Sun X; Wang H; Liu Z; Zhao XS ACS Appl Mater Interfaces; 2013 Aug; 5(15):7501-8. PubMed ID: 23848251 [TBL] [Abstract][Full Text] [Related]
14. Porous Co3O4 nanowires derived from long Co(CO3)(0.5)(OH)·0.11H2O nanowires with improved supercapacitive properties. Wang B; Zhu T; Wu HB; Xu R; Chen JS; Lou XW Nanoscale; 2012 Mar; 4(6):2145-9. PubMed ID: 22337265 [TBL] [Abstract][Full Text] [Related]
15. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
16. A new series of ionic liquids based on the difluorophosphate anion. Matsumoto K; Hagiwara R Inorg Chem; 2009 Aug; 48(15):7350-8. PubMed ID: 19580312 [TBL] [Abstract][Full Text] [Related]
17. A sol-gel process for fabrication of NiO/NiCo2O4/Co3O4 composite with improved electrochemical behavior for electrochemical capacitors. Liu MC; Kong LB; Lu C; Li XM; Luo YC; Kang L ACS Appl Mater Interfaces; 2012 Sep; 4(9):4631-6. PubMed ID: 22924644 [TBL] [Abstract][Full Text] [Related]
18. Nanostructured cobalt hydroxide thin films as high performance pseudocapacitor electrodes by graphene oxide wrapping. Bae S; Cha JH; Lee JH; Jung DY Dalton Trans; 2015 Sep; 44(36):16119-26. PubMed ID: 26289720 [TBL] [Abstract][Full Text] [Related]
19. Pseudocapacitive performance of a solution-processed β-Co(OH) Gaikar PS; Navale ST; Gaikwad SL; Al-Osta A; Jadhav VV; Arjunwadkar PR; Naushad M; Mane RS Dalton Trans; 2017 Mar; 46(10):3393-3399. PubMed ID: 28239712 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of porous β-Co(OH)2 architecture at room temperature: a high performance supercapacitor. Mondal C; Ganguly M; Manna PK; Yusuf SM; Pal T Langmuir; 2013 Jul; 29(29):9179-87. PubMed ID: 23806182 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]