These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 23398028)

  • 1. Dark plasmons in hot spot generation and polarization in interelectrode nanoscale junctions.
    Herzog JB; Knight MW; Li Y; Evans KM; Halas NJ; Natelson D
    Nano Lett; 2013 Mar; 13(3):1359-64. PubMed ID: 23398028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems.
    Wei H; Hao F; Huang Y; Wang W; Nordlander P; Xu H
    Nano Lett; 2008 Aug; 8(8):2497-502. PubMed ID: 18624393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Plasmon Mode and Surface-Enhanced Raman Scattering Analyses of Strongly Coupled Plasmonic Nanotrimers with Diverse Geometries.
    Lee H; Kim GH; Lee JH; Kim NH; Nam JM; Suh YD
    Nano Lett; 2015 Jul; 15(7):4628-36. PubMed ID: 26075353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-Nanostructured Single Silver Nanowire: A New One-Dimensional Microscale Surface-Enhanced Raman Scattering Interface.
    Chen M; Zhang H; Ge Y; Yang S; Wang P; Fang Y
    Langmuir; 2018 Dec; 34(50):15160-15165. PubMed ID: 30485107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes.
    Lee JH; You MH; Kim GH; Nam JM
    Nano Lett; 2014 Nov; 14(11):6217-25. PubMed ID: 25275930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ag@SiO2 Core-Shell Nanostructures: Distance-Dependent Plasmon Coupling and SERS Investigation.
    Shanthil M; Thomas R; Swathi RS; George Thomas K
    J Phys Chem Lett; 2012 Jun; 3(11):1459-64. PubMed ID: 26285622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanogap structures: combining enhanced Raman spectroscopy and electronic transport.
    Natelson D; Li Y; Herzog JB
    Phys Chem Chem Phys; 2013 Apr; 15(15):5262-75. PubMed ID: 23385304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Further enhancement of the near-field on Au nanogap dimers using quasi-dark plasmon modes.
    Shibata K; Fujii S; Sun Q; Miura A; Ueno K
    J Chem Phys; 2020 Mar; 152(10):104706. PubMed ID: 32171196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring the surface-enhanced Raman scattering enhancement factors of hot spots formed between an individual Ag nanowire and a single Ag nanocube.
    Camargo PH; Cobley CM; Rycenga M; Xia Y
    Nanotechnology; 2009 Oct; 20(43):434020. PubMed ID: 19801754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-molecule and single-particle-based correlation studies between localized surface plasmons of dimeric nanostructures with ~1 nm gap and surface-enhanced Raman scattering.
    Lee H; Lee JH; Jin SM; Suh YD; Nam JM
    Nano Lett; 2013; 13(12):6113-21. PubMed ID: 24256433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct observation of one-dimensional plasmon coupling in metallic nanofibers prepared by evaporation-induced self-assembly with DNA.
    Nakao H; Tokonami S; Hamada T; Shiigi H; Nagaoka T; Iwata F; Takeda Y
    Nanoscale; 2012 Nov; 4(21):6814-22. PubMed ID: 23011186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling dynamic SERS hot spots on a monolayer film of Fe3O4@Au nanoparticles by a magnetic field.
    Guo QH; Zhang CJ; Wei C; Xu MM; Yuan YX; Gu RA; Yao JL
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 152():336-42. PubMed ID: 26232577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy.
    Wei H; Xu H
    Nanoscale; 2013 Nov; 5(22):10794-805. PubMed ID: 24113688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing dipole and quadrupole resonance mode in non-plasmonic nanowire using Raman spectroscopy.
    Raha S; Mitra S; Kumar Mondal P; Biswas S; D Holmes J; Singha A
    Nanotechnology; 2020 Jun; 31(42):425201. PubMed ID: 32541104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering SERS via absorption control in novel hybrid Ni/Au nanovoids.
    Cole RM; Mahajan S; Bartlett PN; Baumberg JJ
    Opt Express; 2009 Aug; 17(16):13298-308. PubMed ID: 19654734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical Field Enhancement in Au Nanoparticle-Decorated Nanorod Arrays Prepared by Femtosecond Laser and Their Tunable Surface-Enhanced Raman Scattering Applications.
    Cao W; Jiang L; Hu J; Wang A; Li X; Lu Y
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1297-1305. PubMed ID: 29256245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong optical coupling between mutually orthogonal plasmon oscillations in a silver nanosphere-nanowire joined system.
    Kim S; Imura K; Lee M; Narushima T; Okamoto H; Jeong DH
    Phys Chem Chem Phys; 2013 Mar; 15(12):4146-53. PubMed ID: 23165283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noble metal nanowires: from plasmon waveguides to passive and active devices.
    Lal S; Hafner JH; Halas NJ; Link S; Nordlander P
    Acc Chem Res; 2012 Nov; 45(11):1887-95. PubMed ID: 23102053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical rectification and field enhancement in a plasmonic nanogap.
    Ward DR; Hüser F; Pauly F; Cuevas JC; Natelson D
    Nat Nanotechnol; 2010 Oct; 5(10):732-6. PubMed ID: 20852641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.