These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 23398051)

  • 1. Atomic layer deposition of a submonolayer catalyst for the enhanced photoelectrochemical performance of water oxidation with hematite.
    Riha SC; Klahr BM; Tyo EC; Seifert S; Vajda S; Pellin MJ; Hamann TW; Martinson AB
    ACS Nano; 2013 Mar; 7(3):2396-405. PubMed ID: 23398051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-Temperature Atomic Layer Deposition of Crystalline and Photoactive Ultrathin Hematite Films for Solar Water Splitting.
    Steier L; Luo J; Schreier M; Mayer MT; Sajavaara T; Grätzel M
    ACS Nano; 2015 Dec; 9(12):11775-83. PubMed ID: 26516784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving hematite-based photoelectrochemical water splitting with ultrathin TiO2 by atomic layer deposition.
    Yang X; Liu R; Du C; Dai P; Zheng Z; Wang D
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12005-11. PubMed ID: 25069041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revealing the Role of TiO2 Surface Treatment of Hematite Nanorods Photoanodes for Solar Water Splitting.
    Li X; Bassi PS; Boix PP; Fang Y; Wong LH
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):16960-6. PubMed ID: 26192330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced photocatalytic water oxidation efficiency with Ni(OH)₂ catalysts deposited on α-Fe₂O₃ via ALD.
    Young KM; Hamann TW
    Chem Commun (Camb); 2014 Aug; 50(63):8727-30. PubMed ID: 24963754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced photoelectrochemical water oxidation via atomic layer deposition of TiO2 on fluorine-doped tin oxide nanoparticle films.
    Cordova IA; Peng Q; Ferrall IL; Rieth AJ; Hoertz PG; Glass JT
    Nanoscale; 2015 May; 7(18):8584-92. PubMed ID: 25899449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Facile Surface Passivation of Hematite Photoanodes with TiO2 Overlayers for Efficient Solar Water Splitting.
    Ahmed MG; Kretschmer IE; Kandiel TA; Ahmed AY; Rashwan FA; Bahnemann DW
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24053-62. PubMed ID: 26488924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoelectrochemical and impedance spectroscopic investigation of water oxidation with "Co-Pi"-coated hematite electrodes.
    Klahr B; Gimenez S; Fabregat-Santiago F; Bisquert J; Hamann TW
    J Am Chem Soc; 2012 Oct; 134(40):16693-700. PubMed ID: 22950478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ growth of α-Fe
    Li C; Chen Z; Yuan W; Xu QH; Li CM
    Nanoscale; 2019 Jan; 11(3):1111-1122. PubMed ID: 30574647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrathin CoO
    Du C; Wang J; Liu X; Yang J; Cao K; Wen Y; Chen R; Shan B
    Phys Chem Chem Phys; 2017 May; 19(21):14178-14184. PubMed ID: 28530305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co3O4-modified TiO2 nanotube arrays via atomic layer deposition for improved visible-light photoelectrochemical performance.
    Huang B; Yang W; Wen Y; Shan B; Chen R
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):422-31. PubMed ID: 25493324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mechanistic study into the catalytic effect of Ni(OH)2 on hematite for photoelectrochemical water oxidation.
    Wang G; Ling Y; Lu X; Zhai T; Qian F; Tong Y; Li Y
    Nanoscale; 2013 May; 5(10):4129-33. PubMed ID: 23563928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal decomposition approach for the formation of α-Fe2O3 mesoporous photoanodes and an α-Fe2O3/CoO hybrid structure for enhanced water oxidation.
    Diab M; Mokari T
    Inorg Chem; 2014 Feb; 53(4):2304-9. PubMed ID: 24471819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lattice defect-enhanced hydrogen production in nanostructured hematite-based photoelectrochemical device.
    Wang P; Wang D; Lin J; Li X; Peng C; Gao X; Huang Q; Wang J; Xu H; Fan C
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):2295-302. PubMed ID: 22452535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces.
    Yang J; Walczak K; Anzenberg E; Toma FM; Yuan G; Beeman J; Schwartzberg A; Lin Y; Hettick M; Javey A; Ager JW; Yano J; Frei H; Sharp ID
    J Am Chem Soc; 2014 Apr; 136(17):6191-4. PubMed ID: 24720554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constructing inverse opal structured hematite photoanodes via electrochemical process and their application to photoelectrochemical water splitting.
    Shi X; Zhang K; Shin K; Moon JH; Lee TW; Park JH
    Phys Chem Chem Phys; 2013 Jul; 15(28):11717-22. PubMed ID: 23752489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hematite-based photo-oxidation of water using transparent distributed current collectors.
    Riha SC; Vermeer MJ; Pellin MJ; Hupp JT; Martinson AB
    ACS Appl Mater Interfaces; 2013 Jan; 5(2):360-7. PubMed ID: 23286276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Charge Separation through ALD-Modified Fe2 O3 /Fe2 TiO5 Nanorod Heterojunction for Photoelectrochemical Water Oxidation.
    Li C; Wang T; Luo Z; Liu S; Gong J
    Small; 2016 Jul; 12(25):3415-22. PubMed ID: 27197643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trade-off between Zr Passivation and Sn Doping on Hematite Nanorod Photoanodes for Efficient Solar Water Oxidation: Effects of a ZrO2 Underlayer and FTO Deformation.
    Subramanian A; Annamalai A; Lee HH; Choi SH; Ryu J; Park JH; Jang JS
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19428-37. PubMed ID: 27420603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porous versus Compact Nanosized Fe(III)-Based Water Oxidation Catalyst for Photoanodes Functionalization.
    Orlandi M; Dalle Carbonare N; Caramori S; Bignozzi CA; Berardi S; Mazzi A; El Koura Z; Bazzanella N; Patel N; Miotello A
    ACS Appl Mater Interfaces; 2016 Aug; 8(31):20003-11. PubMed ID: 27447454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.