These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 23398129)

  • 21. Dynamic behavior of the water droplet impact on a textured hydrophobic/superhydrophobic surface: the effect of the remaining liquid film arising on the pillars' tops on the contact time.
    Li X; Ma X; Lan Z
    Langmuir; 2010 Apr; 26(7):4831-8. PubMed ID: 20151667
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Statics of polymer droplets on deformable surfaces.
    Léonforte F; Müller M
    J Chem Phys; 2011 Dec; 135(21):214703. PubMed ID: 22149807
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Contact Time of Droplet Impact on Inclined Ridged Superhydrophobic Surfaces.
    Hu Z; Chu F; Lin Y; Wu X
    Langmuir; 2022 Feb; 38(4):1540-1549. PubMed ID: 35072484
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Non-wet kingfisher flying in the rain: The water-repellent mechanism of elastic feathers.
    Zhang C; Zheng Y; Wu Z; Wang J; Shen C; Liu Y; Ren L
    J Colloid Interface Sci; 2019 Apr; 541():56-64. PubMed ID: 30682593
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanowall Textured Hydrophobic Surfaces and Liquid Droplet Impact.
    Yilbas BS; Abubakar A; Yakubu M; Al-Qahtani H; Al-Sharafi A
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268876
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Droplet impact on superhydrophobic surfaces fully decorated with cylindrical macrotextures.
    Abolghasemibizaki M; Mohammadi R
    J Colloid Interface Sci; 2018 Jan; 509():422-431. PubMed ID: 28923739
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic wetting and spreading characteristics of a liquid droplet impinging on hydrophobic textured surfaces.
    Lee JB; Lee SH
    Langmuir; 2011 Jun; 27(11):6565-73. PubMed ID: 21539350
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Superhydrophobic surfaces for extreme environmental conditions.
    Lambley H; Schutzius TM; Poulikakos D
    Proc Natl Acad Sci U S A; 2020 Nov; 117(44):27188-27194. PubMed ID: 33077603
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impact of viscous droplets on different wettable surfaces: Impact phenomena, the maximum spreading factor, spreading time and post-impact oscillation.
    Lin S; Zhao B; Zou S; Guo J; Wei Z; Chen L
    J Colloid Interface Sci; 2018 Apr; 516():86-97. PubMed ID: 29360059
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Estimating the mechanical properties of retinal tissue using contact angle measurements of a spreading droplet.
    Grant CA; Twigg PC; Savage MD; Woon WH; Wilson M; Greig D
    Langmuir; 2013 Apr; 29(16):5080-4. PubMed ID: 23534866
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the role of the three-phase contact line in surface deformation.
    Leh A; N'guessan HE; Fan J; Bahadur P; Tadmor R; Zhao Y
    Langmuir; 2012 Apr; 28(13):5795-801. PubMed ID: 22375701
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physicochemical characteristics and droplet impact dynamics of superhydrophobic carbon nanotube arrays.
    Aria AI; Gharib M
    Langmuir; 2014 Jun; 30(23):6780-90. PubMed ID: 24866696
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation of splashing phenomena during the impact of molten sub-micron gold droplets on solid surfaces.
    Shen D; Zou G; Liu L; Duley WW; Norman Zhou Y
    Soft Matter; 2016 Jan; 12(1):295-301. PubMed ID: 26456326
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of picoliter droplets on superhydrophobic surfaces with ultralow spreading ratios.
    Brown PS; Berson A; Talbot EL; Wood TJ; Schofield WC; Bain CD; Badyal JP
    Langmuir; 2011 Nov; 27(22):13897-903. PubMed ID: 22011196
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Droplets Can Rebound toward Both Directions on Textured Surfaces with a Wettability Gradient.
    Zhang B; Lei Q; Wang Z; Zhang X
    Langmuir; 2016 Jan; 32(1):346-51. PubMed ID: 26669260
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Elastic modulus of a polymer nanodroplet: theory and experiment.
    Evangelopoulos AE; Glynos E; Madani-Grasset F; Koutsos V
    Langmuir; 2012 Mar; 28(10):4754-67. PubMed ID: 22276929
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction forces, deformation and nano-rheology of emulsion droplets as determined by colloid probe AFM.
    Gillies G; Prestidge CA
    Adv Colloid Interface Sci; 2004 May; 108-109():197-205. PubMed ID: 15072942
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Effect of Surface Wettability on Viscoelastic Droplet Dynamics under Electric Fields.
    Wei BS; Joo SW
    Micromachines (Basel); 2022 Apr; 13(4):. PubMed ID: 35457884
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces.
    Miljkovic N; Preston DJ; Enright R; Wang EN
    ACS Nano; 2013 Dec; 7(12):11043-54. PubMed ID: 24261667
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microdroplet growth mechanism during water condensation on superhydrophobic surfaces.
    Rykaczewski K
    Langmuir; 2012 May; 28(20):7720-9. PubMed ID: 22548441
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.