BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 23398240)

  • 1. Experimental investigation of a spiral-wound pressure-retarded osmosis membrane module for osmotic power generation.
    Kim YC; Kim Y; Oh D; Lee KH
    Environ Sci Technol; 2013 Mar; 47(6):2966-73. PubMed ID: 23398240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adverse impact of feed channel spacers on the performance of pressure retarded osmosis.
    Kim YC; Elimelech M
    Environ Sci Technol; 2012 Apr; 46(8):4673-81. PubMed ID: 22420537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental study of a 4040 spiral-wound forward-osmosis membrane module.
    Kim YC; Park SJ
    Environ Sci Technol; 2011 Sep; 45(18):7737-45. PubMed ID: 21842852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients.
    Yip NY; Tiraferri A; Phillip WA; Schiffman JD; Hoover LA; Kim YC; Elimelech M
    Environ Sci Technol; 2011 May; 45(10):4360-9. PubMed ID: 21491936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly robust thin-film composite pressure retarded osmosis (PRO) hollow fiber membranes with high power densities for renewable salinity-gradient energy generation.
    Han G; Wang P; Chung TS
    Environ Sci Technol; 2013 Jul; 47(14):8070-7. PubMed ID: 23772898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minimizing the instant and accumulative effects of salt permeability to sustain ultrahigh osmotic power density.
    Zhang S; Chung TS
    Environ Sci Technol; 2013 Sep; 47(17):10085-92. PubMed ID: 23941367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of natural organic matter fouling and osmotic backwash on pressure retarded osmosis energy production from natural salinity gradients.
    Yip NY; Elimelech M
    Environ Sci Technol; 2013; 47(21):12607-16. PubMed ID: 24099133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic and energy efficiency analysis of power generation from natural salinity gradients by pressure retarded osmosis.
    Yip NY; Elimelech M
    Environ Sci Technol; 2012 May; 46(9):5230-9. PubMed ID: 22463483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance limiting effects in power generation from salinity gradients by pressure retarded osmosis.
    Yip NY; Elimelech M
    Environ Sci Technol; 2011 Dec; 45(23):10273-82. PubMed ID: 22022858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selectivity and Mass Transfer Limitations in Pressure-Retarded Osmosis at High Concentrations and Increased Operating Pressures.
    Straub AP; Osuji CO; Cath TY; Elimelech M
    Environ Sci Technol; 2015 Oct; 49(20):12551-9. PubMed ID: 26393282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Module-scale analysis of pressure retarded osmosis: performance limitations and implications for full-scale operation.
    Straub AP; Lin S; Elimelech M
    Environ Sci Technol; 2014 Oct; 48(20):12435-44. PubMed ID: 25222561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply.
    Klaysom C; Cath TY; Depuydt T; Vankelecom IF
    Chem Soc Rev; 2013 Aug; 42(16):6959-89. PubMed ID: 23778699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Pressure-Retarded Osmosis Performance between Pilot-Scale Cellulose Triacetate Hollow-fiber and Polyamide Spiral-Wound Membrane Modules.
    Kakihana Y; Jullok N; Shibuya M; Ikebe Y; Higa M
    Membranes (Basel); 2021 Feb; 11(3):. PubMed ID: 33671075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis.
    Yip NY; Elimelech M
    Environ Sci Technol; 2014 Sep; 48(18):11002-12. PubMed ID: 25157687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fouling propensity of forward osmosis: investigation of the slower flux decline phenomenon.
    Lay WC; Chong TH; Tang CY; Fane AG; Zhang J; Liu Y
    Water Sci Technol; 2010; 61(4):927-36. PubMed ID: 20182071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pressure retarded osmosis for energy production: membrane materials and operating conditions.
    Kim H; Choi JS; Lee S
    Water Sci Technol; 2012; 65(10):1789-94. PubMed ID: 22546793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impaired Performance of Pressure-Retarded Osmosis due to Irreversible Biofouling.
    Bar-Zeev E; Perreault F; Straub AP; Elimelech M
    Environ Sci Technol; 2015 Nov; 49(21):13050-8. PubMed ID: 26426100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-Dimensional Ti
    Gao H; Chen W; Xu C; Liu S; Tong X; Chen Y
    Environ Sci Technol; 2020 Mar; 54(5):2931-2940. PubMed ID: 32048835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relating reverse and forward solute diffusion to membrane fouling in osmotically driven membrane processes.
    She Q; Jin X; Li Q; Tang CY
    Water Res; 2012 May; 46(7):2478-86. PubMed ID: 22386887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of organic nutrient load on biomass accumulation, feed channel pressure drop increase and permeate flux decline in membrane systems.
    Bucs SS; Valladares Linares R; van Loosdrecht MC; Kruithof JC; Vrouwenvelder JS
    Water Res; 2014 Dec; 67():227-42. PubMed ID: 25282091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.